PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hyperelastic behavior of cellular structures based on micromechanical modeling at small strain

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper extends recent effective, linear anisotropic elasticity model [6, 7] for cellular materials by implying geometric nonlinearity, which is built as the constitutive relation between Green’s Lagrangean strain in the tensor and the second Piola–Kirchhoff stress tensor and strain potential formulation. Cellular materials may easily experience large deformations due to large pores-to-volume ratio, since such a deformation on the macroscopic level usually requires smaller deformations of the individual struts constituting the skeleton. The formulation based on micromechanical modeling assumes that essential macroscopic features of mechanical behavior on a macro scale, can be inferred from the deformation response of a representative volume element. Open-cell materials with diverse regular skeleton structures are considered. The initial stiffness tensor components for anisotropic continuum are expressed as fuctions of microstructural parameters, such as skeleton geometric data of representative volume element and skeleton material properties. Since large strains in skeleton structure are characteristic for elasto-plastic behavior, interest is focused on the large displacement and small strain cases. Examples involving numerical tests on cellular materials under homogenoeous strain, relevant to simple shearing and to uniaxial or biaxial loading in the tensile and compressive range, are considered.
Rocznik
Strony
3--3
Opis fizyczny
–-23, Bibliogr. 26 poz.
Twórcy
  • Institute of Structural Mechanics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland
Bibliografia
  • 1. W.E. Warren, A.M. Kraynik, The nonlinear elastic behaviour of open-cell foams, Transactions of ASME, 58, 375–381, June 1991.
  • 2. W.E. Warren, A.M. Kraynik, C.M. Stone, A constitutive model for two-dimensional nonlinear elastic foams, Journal of the Mechanics and Physics of Solids and Structures, 37, 717–733, 1989.
  • 3. Y. Wang, A.M. Cuitiño, Three-dimensional nonlinear open cell foams with large deformations, Journals of the Mechanics and Physics of Solids, 48, 961–988, 2000.
  • 4. J. Hohe, W. Becker, Effective mechanical behavior of hyperelastic honeycombs and twodimensional model foams at finite strain, International Journal of Mechanical Sciences, 45, 891–913, 2003.
  • 5. M. Janus-Michalska, R.B. Pęcherski, Macroscopic properties of open-cell foams based on micromechanical modeling, Technische Mechanik, Band 23, Heft 2-4, 221–231, 2003.
  • 6. M. Janus-Michalska, Effective models describing elastic behavior of cellular materials, Archives of Metallurgy and Materials, 50, 595–608, 2005.
  • 7. P. Kordzikowski, M. Janus-Michalska, R. Pęcherski, Specification of energy–based criterion of elastic limit states for cellular materials, Archives of Metallurgy and Materials, 50, 621–634, 2005.
  • 8. R.W. Ogden [Ed.], Nonlinear Elasticity with Application to Material Modeling, Center of Excellence for Advanced Materials and Structures, Warsaw 2003.
  • 9. V.V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Dover 1999 (translated from Russian first edition, 1948).
  • 10. M.M. Attard, Finite strain isotropic hyperelasticity, Int. Jour. of Solids and Struct., 40, 4353–4378, 2003.
  • 11. A. Chiskis, R. Parnes, Linear stress-strain relations in nonlinear elasticity, Acta Mechanica, 146, 109–113, 2001.
  • 12. M.M. Mehrabadi, C. Cowin, Eigentensors of linear anisotropic elastic materials, Q. J. Mech. Appl. Math., 43, 15–41, 1990.
  • 13. S. Nemat-Nasser, M. Hori, Micromechanics. 2nd ed., Elsevier, North-Holland, Amsterdam 1999.
  • 14. S. Nemat-Nasser, Averaging theorems in finite deformation plasticity, Mechanics of Materials, 31, 493–523, 1999.
  • 15. A.J. Wang, D.L. Mcdowell, In-plane stiffness and yield strength of periodic metal honeycombs, Journal of Eng. Materials and Technology, 126, 137–156, 2004.
  • 16. J. Rychlewski, Unconventional approach to linear elasticity, Archives of Mechanics, 47, 149–171, 1995.
  • 17. J. Lellep, J. Majak, On optimal orientation of nonlinear elastic orthotropic materials, Structural Optimization, 14, 116–120, 1997.
  • 18. M. Janus-Michalska, Micromechanical model of auxetic cellular materials, Journal of Theoretical and Applied Mechanics, 47, 4, 2009 .
  • 19. F. Feyel, J.L. Chaboche, FE2 multiscale approach for modelling the elastovisco-plastic behaviour of long fiber SiC/Ti composite materials, Comp. Meth. Appl. Mech. Engng., 183, 309–330, 2000.
  • 20. S. Forest, K. Sab, Cosserat overall modeling of heterogeneous materials, Mech. Res. Commun., 25, 449–454, 1998.
  • 21. R. Jänicke, S. Diebels, H.G. Sehlhorst, A. Dürster, Two-scale modelling of micromorphic continua, Continuum Mech. Therm., 21, 4, 297–315, 2009.
  • 22. V.G. Kouznetsova, W.A.M. Brekelmans, F.P.T. Baaijens, An approach to micromacromodeling of heterogeneous materials. Comp. Mech., 37–48, 2001.
  • 23. V.G. Kouznetsova, M. G. D. Geers V. A. M. Brekelmans, Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Int. J.Numer. Meth. Eng., 54, 1235–1260, 2002.
  • 24. C. Miehe, J. Schotte, J. Schröder, Computational micro-macro transition and overall moduli in the analysis of polycrystals at large strains, Comp. Mat. Science, 16, 372–382, 1999.
  • 25. C. Tekođlu, P.R. Onck, Size effects in the mechanical behaviour of cellular materials, J. Mat. Sci., 40, 5911–5917, 2005.
  • 26. T. Beechem, K. Lafdi, Novel high strength graphitic foams, Carbon, 44, 1548–1559, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.