Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An analysis by Zanzotto (1992, 1996) showed that, if crystal twinning is considered as a material symmetry operation, the symmetry groups of many crystals that form twins correspond to the unimodular group, which is the symmetry group of elastic fluids. It is therefore evident that an elastic modelling based on an elastic energy that includes any possible combination of twin system activation must fail. However, one may try to construct an elastic energy which includes only the stressfree configurations of the parent and the first order twins. It is known that, even under this restriction, many twinning modes exhibit an elastic energy invariance, which renders them indistinguishable in terms of the elastic energy. In this article, it is demonstrated that this energy invariance holds for all compound twins. The implications of the latter are discussed. It is suggested to distinguish between crystallographically equivalent and crystallographically distinct compound twins, since different implications regarding the elastic energy invariance emerge.
Czasopismo
Rocznik
Tom
Strony
441--464
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
- Institut für Mechanik Otto-von-Guericke-Universität Magdeburg Postfach 4120 D-39106 Magdeburg, Germany
Bibliografia
- 1.Abeyaratne, R., Knowles, J., 1991, Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids, SIAM Journal on Applied Mathematics, 51, 1205–1221.
- 2. Abeyaratne, R., Knowles, J., 2006, Evolution of Phase Transitions – A Continuum Theory, Cambridge University Press.
- 3. Ball, J., James, R., 1987, Fine phase mixtures as minimizers of energy, Archive for Rational Mechanics and Analysis, 100, 13–52.
- 4. Ball, J., James, R., 1992, Proposed experimental tests of a theory of fine microstructure, and the two-well problem, Philosophical Transactions of the Royal Society of London A, 338, 389–450.
- 5. Bertram, A., 1999, An alternative approach to finite plasticity based on material isomorphisms, International Journal of Plasticity, 15, 3, 353–374.
- 6. Böhlke, T., Bondár, G., Estrin, Y., Lebyodkin, M., 2009, Geometrically non-linear modeling of the Portevin-Le Chatelier effect, Computational Materials Science, 44, 1076–1088.
- 7. Born, M., Huang, K., 1954, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford.
- 8. Cahn, R., 1953, Plastic deformation of alpha-uranium: twinning and slip, Acta Metallurgica, 53, 49–70.
- 9. Carstensen, C., 2005, Ten remarks on nonconvex minimisation for phase transition simulations, Computer Methods in Applied Mechanics and Engineering, 194, 169–193.
- 10. Chaboche, J., Feyel, F., Monerie, Y., 2001, Interface debonding models: a viscous regularization with a limited rate dependency, International Journal of Solids and Structures, 38, 3127–3160.
- 11. Christian, J., 1975, The theory of transformations in metals and alloys: an advanced textbook in physical metallurgy. International series on materials science and technology, Pergamon Press, Oxford, New York.
- 12. Christian, J., Mahajan, S., 1995, Deformation twinning, Progress in Materials Science, 39, 1–157.
- 13. Clayton, J., 2009, A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire, Proceedings of the Royal Society of London A, 465, 307–334.
- 14. Demczyk, B., 1990, Estimation of the surface energy in coherent-phase mixtures controlled by elastic-strain energy, Physical Review Letters B, 42, 4738–4740.
- 15. Dias da Silva, V., 2004, A simple model for viscous regularization of elasto-plastic constitutive laws with softening, Communications in Numerical Methods in Engineering, 20, 547–568.
- 16. Ericksen, J., 1975, Equilibrium of bars, Journal of Elasticity, 5, 191–202.
- 17. Ericksen, J., 1980, Some phase transitions in crystals, Archive for Rational Mechanics and Analysis, 73, 99–124.
- 18. Ericksen, J., 1984a, The Cauchy–Born hypothesis for crystals, [in:] Gurtin, M. [Ed.], Phase Transformations and Material Instabilities in Solids, Academic Press.
- 19. Ericksen, J., 1984b, Twinning of Crystals, Preprint Series of the Institute for Mathematics and its Application of the University of Minnesota, 95, 1–18.
- 20. Forest, S., Parisot, R., 2000, Material crystal plasticity and deformation twinning, Rendiconti del Seminario Matematico della Università e Politecnico di Torino, 58, 1, 99–111.
- 21. Glüge, R., 2009, Elastic modelling of deformation twinning on the microscale in magnesium, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg.
- 22. Glüge, R., Bertram, A., Böhlke, T., Specht, E., 2010, A Pseudoelastic Model for Mechanical Twinning on the Microscale, Zeitschrift für Angewandte Mathematik Und Mechanik, DOI 10.1002/zamm.200900339.
- 23. Glüge, R., Böhlke, T., 2007, Micromechanical modeling of twinning, Proceedings in Applied Mathematics and Mechanics, 7, 4060039–4060040.
- 24. Glüge, R., Kalisch, J., 2008, A lower bound estimation of a twinning stress for Mg by a stress jump analysis at the twin-parent interface, [in:] Bertram, A., Tomas, J. [Eds.], Micro-Macro-Interactions in Structured Media and Particle Systems, Springer-Verlag.
- 25. Hanson, R., 1985, Self-inverse integer matrices, The College Mathematics Journal, 16, 190–198.
- 26. Hou, T., Rosakis, P., LeFloch, P., 1999, A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics, Journal of Computational Physics, 150, 302–331.
- 27. Hutchinson, J., 1976, Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the Royal Society of London A, 348, 101–127.
- 28. Khachaturyan, A., 1983, Theory of Structural Transformations in Solids, Wiley, New York.
- 29. Li, B., Ma, E., 2009a, Atomic shuffling dominated mechanism for deformation twinning In magnesium, Physical Review Letters, 103, 35503–1–4.
- 30. Li, B., Ma, E., 2009b, Zonal dislocations mediating {1011}h1012i twinning in magnesium, Acta Materialia, 57, 1734–1743.
- 31. Neumann, P., 1966, Vereinfachung kristallographischer Rechnungen in hexagonalen Gittern durch konsequente Benutzung des vierachsigen hexagonalen Koordinatensystems, Physica Status Solidi, 17, K71–K74.
- 32. Petryk, H., Fischer, F., Marketz, W., Clemens, H., Appel, F., 2003, An energy approach to the formation of twins in TiAl, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 34, 2827–2836.
- 33. Pitteri, M., 1986, On type-2 twins in cystals, International Journal of Plasticity, 2, 99–106.
- 34. Pitteri, M., Zanzotto, G., 2002, Continuum Models for Phase Transitions and Twinning in Crystals, Chapman and Hall/CRC.
- 35. Roubíček, T., 2004, Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, Kluwer Academic Publishers, Ch. Models of Microstructure Evolution in Shape Memory Alloys, pp. 269–304.
- 36. Serra, A., Bacon, D., 1986, Computer simulation of twin boundaries in the h.c.p. metals, Philosophical Magazine A, 54, 793–804.
- 37. Serra, A., Bacon, D., 1991, Computer simulation of twinning dislocation in magnesium using a many-body potential, Philosophical Magazine A, 63, 1001–1012.
- 38. Sidi Ammi, M., Torres, D., 2008, Regularity of Solutins of the Autonomous Integrals of the Calculus of Variations, [in:] Differential Equations, Chaos and Variational Problems, Springer.
- 39. Simo, J., Hughes, T., 1998, Computational Inelasticity, Springer-Verlag, New York.
- 40. Stark, J., 1988, Mechanical twinning in crystals, Physical Review B, 38, 1139–1142.
- 41. Wang, Y., Jin, Y., Khachaturyan, A., 2004, The Effects of Free Surfaces on Martensite Microstructures: 3D Phase Field Microelasticity Simulation Study, Acta Materialia, 52, 4, 1039–1050.
- 42. Zanzotto, G., 1992, On the material symmetry group of elastic crystals and the Born rule, Archive for Rational Mechanics and Analysis, 121, 1–36.
- 43. Zanzotto, G., 1996, The Cauchy–Born Hypothesis, Nonlinear Elasticity and Mechanical Twinning in Crystals, Acta Crystallographica A, 52, 839–849.
- 44. Zhang, M., Kelly, P., 2009, Crystallographic features of phase transformations in solids, Progress in Materials Science, 54, 1101–1170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0006