PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffusion of calcium in biological tissues and accompanying mechano-chemical effects

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider the coupling between chemical and mechanical effects accompanying the diffusion of calcium, either in biological tissues or in a single long cell. The tissue is treated either as a 3-D, or as a quasi-2-D thin layer, of visco-elastic medium, whereas the cell is represented as a thin long cylinder. In particular, the influence of viscosity on the properties of calcium travelling waves is studied. In principle, we explore here the simplest model of calcium diffusion which is based on an effective diffusion coefficient, thus neglecting the details of the role played by buffers. The mechano-chemical coupling in the model is realized by the presence of a traction tensor, in addition to the viscoelastic stress tensor in the mechanical equations, and the strain tensor in the source term of the calcium diffusion equation, as proposed in [1–4]. Our aim is to provide a simple and effective theory, which can be useful in studying various effects influencing propagation of calcium waves. Since in the absence of viscosity the whole mechano-chemical system for calcium and buffers is easily reduced to the “chemical one”, i.e. it consists only of reaction diffusion equations, therefore we decided to perform expansion with respect to the viscosity. Treating, thus, viscous forces as a perturbation, we reduce the problem in each case to a single reaction diffusion equation for the calcium concentration. In this way we avoid the question of the existence of travelling wave solutions as for the so obtained models, their existence follows simply from already known theorems [5–9].
Rocznik
Strony
423--440
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Institute of Applied Mathematics and Mechanics, University of Warsaw Banacha 2 00-097 Warszawa, Poland, zperadz@mimuw.edu.pl
Bibliografia
  • 1. J.D. Murray, Mathematical Biology, 2nd ed., Springer, Berlin 1993.
  • 2. J. Keener, J. Sneyd, Mathematical Physiology, Springer, 1998.
  • 3. D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol., 4, 4, 309–331, 1987.
  • 4. J.D. Murray, G.F. Oster, Generation of biological pattern and form, IMA J. Math. Appl. Med. Biol., 1, 1, 51–75, 1984.
  • 5. A. Volpert, V. Volpert, V. Volpert, Traveling Wave Solutions of Parabolic Systems, AMS, Providence 1994.
  • 6. J. Tsai, J. Sneyd, Existence and stability of traveling waves in buffered systems, SIAM J. Appl. Math., 66, 237–265, 2005.
  • 7. J. Sneyd, P.D. Dalez, A. Duffy, Traveling Waves in Buffered Systems: Applications to calcium waves, SIAM J. Appl. Math., 58, 1178–1192, 1998.
  • 8. B. Kazmierczak, V. Volpert, Travelling calcium waves in systems with non-diffusing buffers, Math. Mod. Meth. Appl. Sci., 18, 883–912, 2008.
  • 9. B. Kazmierczak, V. Volpert, Calcium waves in systems with immobile buffers as a limit of waves for systems with non-zero diffusion, Nonlinearity, 21, 71–96, 2008.
  • 10. P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes In Biomath., Vol. 28, Springer, New York 1979.
  • 11. M. Falcke, Reading the patterns in living cells – the physics of Ca2+ signaling, Advances in Physics, 53, 255–440, 2004.
  • 12. J. Sneyd, Calcium Oscilations and Waves, Proceedings of Symposia in Applied Mathematics, 59, 83–118, 2002.
  • 13. S.H. Young, H.S. Ennes, J.A. McRoberts, V.V. Chaban, S.K. Dea, E.A. Mayer Cure, Calcium waves in colonic myocytes produced by mechanical and receptor-mediated stimulation, Am. J. Physiol. Gastrointest. Liver Physiol., 276, 1204–1212, 1999.
  • 14. J. Shenq Guo, J. Tsai, The asymptotic behavior of solutions of the buffered bistable system, J. Math. Biol., 2006.
  • 15. B. Kaźmierczak, Z. Peradzyński, Calcium waves with fast buffers and mechanical effects, J. Math. Biol., DOI 10.1007/s00285-009-0323-2, 2010.
  • 16. K. Burton, J.H. Park, D. Lansing Taylor, Keratocytes Generate Traction Forces In Two Phases, Molecular Biology of the Cell, Vol. 10, 3745–3769, November 1999.
  • 17. A. Doyle, W. Marganski, J. Lee, Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes, Journal of Cell Science, 117, 2203–2214, 2004.
  • 18. J. Beraeiter-Hahn, Mechanics of crawling cells, Med. Eng. Phys. Nov., 27, 9, 743–753.
  • 19. G. Flores, A. Minzoni, K. Mischiakow, V. Moll, Post-fertilization traveling waves on eggs, Nonlinear Anal., , Ser. A: Theory Methods, 36, 1 45–62, 1999.
  • 20. Y.C. Fung, Foundations of Solid Mechanics, Prentice-Hall, 1965.
  • 21. Mutungi, K.W. Ranatunga, The viscous, viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle fibres, Journal of Physiology, 496, 827–836, 1996.
  • 22. D. Liao, C. Sevcencu, K. Yoshida, H. Gregersen, Viscoelastic properties of isolated rat colon smooth muscle cells, Cell Biology International, 30, 854–858, 2006.
  • 23. Y.-B. Lu, K. Franze, G. Seifert, C. Steinhuser, F. Kirchhoff, H. Wolburg, J. Guck, P. Janmey, E.-Q. Wei, J. Kas, A. Reichenbach, Viscoelastic properties of individual glial cells and neurons in the CNS, PNAS, 103, 17759–17764, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.