PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fundamentals of multiphysics modelling of piezo-poro-elastic structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses theoretical fundamentals necessary for accurate vibroacoustical modeling of structures or composites made up of poroelastic, elastic, and (active) piezoelectric materials, immersed in an acoustic medium (e.g. air). An accuratemodeling of such hybrid active-passive vibroacoustic attenuators (absorbers or insulators) requires a multiphysics approach involving the finite element method to cope with complex geometries. Such fully-coupled, multiphysics model is given in this paper. To this end, first, the accurate PDE-based models of all the involved single-physics problems are recalled and, since a mutual interaction of these various problems is of the uttermost importance, the relevant couplings are thoroughly investigated and taken into account in the modeling. Eventually, the Galerkin finite element model is developed. This model should serve to develop designs of active composite vibroacoustic attenuators made up of porous foams with passive and active solid implants, or hybrid liners and panels made up of a core or layers of porous materials fixed to elastic faceplates with piezoelectric actuators, and coupled to air-gaps. A widespread design of such smart mufflers is still an open topic and should be addressed with accurate predictive tools based on the model proposed in the present paper. The model is accurate in the framework of kinematical and constitutive (material) linearity of behaviour. This is, however, the very case of the vibroacoustic application of elasto-poroelastic panels or composites, where the structural vibrations are induced by acoustic waves. The developed fully-coupled FE model is finally used to solve a generic two-dimensional example and some issues concerning finite element approximation and convergence are also discussed.
Rocznik
Strony
343--378
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Institute of Fundamental Technological Research Polish Academy of Sciences ul. Pawińskiego 5B 02-106 Warszawa, Poland, tzielins@ippt.gov.pl
Bibliografia
  • 1. C.R. Fuller, S.J. Elliott, P.A. Nelson, Active Control of Vibration, Academic Press, 1996.
  • 2. C. Guigou, C.R. Fuller, Control of aircraft interior broadband noise with foam-PVDF smart skin, J. Sound Vib., 220, 3, 541–557, 1999.
  • 3. B.D. Johnson, C.R. Fuller, Broadband control of plate radiation using a piezoelectric, double-amplifier active-skin and structural acoustic sensing, J. Acoust. Soc. Am., 107, 2, 876–884, February 2000.
  • 4. O. Lacour, M.-A. Galland, D. Thenail, Preliminary experiments on noise reduction in cavities using active impedance changes, J. Sound Vib., 230, 1, 69–99, 2000.
  • 5. M.-A. Galland, B. Mazeaud, N. Sellen, Hybrid passive/active absorbers for flow ducts, Appl. Acoust. 66, 691–708, 2005.
  • 6. T.G. Zielinski, M.-A. Galland, M.N. Ichchou, Active reduction of vibroacoustic transmission using elasto-poroelastic sandwich panels and piezoelectric materials, [in:] Proceedings of Symposium on the Acoustics of Poro-Elastic Materials SAPEM’05, Lyon, 2005.
  • 7. C. Batifol, T.G. Zielinski, M.-A. Galland, M.N. Ichchou, Hybrid piezo-poroelastic sound package concept: numerical/experimental validations, [in:] Conference Proceedings of ACTIVE 2006, 2006.
  • 8. C. Batifol, T.G. Zielinski, M.N. Ichchou, M.-A. Galland, A finite-element study of a piezoelectric/poroelastic sound package concept, Smart Mater. Struct. 16, 168–177, 2007.
  • 9. T.G. Zielinski, M.-A. Galland, M.N. Ichchou, Further modeling and new results of active noise reduction using elasto-poroelastic panels, [in:] Conference Proceedings of ISMA2006, 2006.
  • 10. N. Sellen, M. Cuesta, M.-A. Galland, Noise reduction in a flow duct: Implementation of a hybrid passive/active solution, J. Sound Vib., 297, 492–511, 2006.
  • 11. M.-A. Galland, J.-B. Dupont, A new hybrid passive/active cell to realize a complex impedance boundary condition, [in:] Conference Proceedings of Acoustics’08, 2008.
  • 12. P. Leroy, A. Berry, N. Atalla, P. Herzog, Numerical analysis of smart foam for acoustic absorption, [in:] Conference Proceedings of 19th International Congress on Acoustics ICA2007, 2007.
  • 13. P. Leroy, P. Herzog, A. Berry, N. Atalla, Experimental assessment of the performance of a smart foam absorber, [in:] Conference Proceedings of Acoustics’08, 2008.
  • 14. P. Leroy, N. Atalla, A. Berry, P. Herzog, Three-dimensional finite element modeling of smart foam, J. Acoust. Soc. Am., 126, 6, 2873–2885, 2009.
  • 15. J.F. Allard, Propagation of Sound in Porous Media. Modelling Sound. Absorbing Materials, Elsevier, 1993.
  • 16. M.A. Biot, The theory of propagation of elastic waves in a fluid-saturated porous solid, J. Acoust. Soc. Am., 28, 2, 168–191, 1956.
  • 17. M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 4, 1482–1498, April 1962. Fundamentals of multiphysics modelling. . . 377
  • 18. R. de Boer, Theory of Porous Media: Highlights in Historical Development and Current State, Springer, 1999.
  • 19. K. Wilmanski, A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials, Soil Dyn. Earthq. Eng., 26, 509–536, 2006.
  • 20. M. Shanz, Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach, Vol. 2, Lecture Notes in Applied and Computational Mechanics, Springer, 2001.
  • 21. N. Atalla, R. Panneton, P. Debergue, A mixed displacement-pressure formulation for poroelastic materials, J. Acoust. Soc. Am., 104, 3, 1444–1452, September 1998.
  • 22. P. Debergue, R. Panneton, N. Atalla, Boundary conditions for the weak formulation of the mixed (u, p) poroelasticity problem, J. Acoust. Soc. Am., 106, 5, 2383–2390, November 1999.
  • 23. P. Göransson, A 3-D, symmetric, finite element formulation of the Biot equations with application to acoustic wave propagation through an elastic porous medium, Int. J. Numer. Meth. Eng., 41, 167–192, 1998.
  • 24. N.-E. Hörlin, M. Nordström, P. Göransson, A 3-D hierarchical FE formulation of Biot equations for elasto-acoustic modelling of porous media, J. Sound Vib., 245, 4, 633–652, 2001.
  • 25. R. Panneton, N. Atalla, An efficient finite element scheme for solving the three- dimensional poroelasticity problem in acoustics, J. Acoust. Soc. Am., 101, 6, 3287–3298, June 1997.
  • 26. R. Panneton, N. Atalla, Numerical prediction of sound transmission through finie multilayer systems with poroelastic materials, J. Acoust. Soc. Am., 100, 1, 346–354, July 1996.
  • 27. N. Atalla, M.A. Hamdi, R. Panneton, Enhanced weak integral formulation for the mixed (u, p) poroelastic equations, J. Acoust. Soc. Am., 109, 6, 3065–3068, June 2001.
  • 28. S. Rigobert, F.C. Sgard, N. Atalla, A two-field hybrid formulation for multilayers involving poroelastic, acoustic, and elastic materials, J. Acoust. Soc. Am., 115, 6, 2786–2797, June 2004.
  • 29. S. Rigobert, N. Atalla, F.C. Sgard, Investigation of the convergence of the Mied displacement-pressure formulation for three-dimensional poroelastic materials using hierarchical elements, J. Acoust. Soc. Am., 114, 5, 2607–2617, November 2003.
  • 30. J.N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, Wiley, 2002.
  • 31. T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, 1990.
  • 32. G.A. Maugin, Continuum Mechanics of Electromagnetic Solids, Elsevier, 1988.
  • 33. A. Preumont, Vibration Control of Active Structures, Springer, 2002.
  • 34. J.N. Reddy, On laminated composite plates with integrated sensors and actuators, Eng. Struct., 21, 568–593, 1999.
  • 35. A. Benjeddou, Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, Comput. Struct., 76, 347–363, 2000.
  • 36. D.T. Blackstock, Fundamentals of Physical Acoustics, Wiley, 2000.
  • 37. I. Harari, A survey of finite element methods for time-harmonic acoustics, Comput. Methods Appl. Mech. Engrg., 195, 1594–1607, 2006.
  • 38. L.L. Thompson, A review of finite-element methods for time-harmonic acoustics, J. Acoust. Soc. Am., 119, 3, 1315–1330, March 2006.
  • 39. D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave Motion, 39, 319–326, 2004.
  • 40. D. Givoli, B. Neta, High-order non-reflecting boundary scheme for time-dependent waves, J. Comput. Phys., 186, 24–46, 2003.
  • 41. T.G. Zielinski, Multiphysics modeling and experimental validation of the active reduction of structure-borne noise, J. Vib. Acoust., 132, 6, pp. 14, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.