Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this note is to show possible consequences of the principle of stationary action formulated for dissipative bodies. The material structure with internal state variables is considered for those bodies. The appropriate action functional is proposed for a typical dissipative body. Possible variations of fields of dependent state variables are introduced together with a non-commutative rule between operations of taking variations of the field and their partial time derivatives. Assuming vanishing of the first variation of the functional, the balance of linear momentum in differential form is received together with evolution equations for internal state variables and stress boundary condition.
Czasopismo
Rocznik
Tom
Strony
95--106
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
autor
- Polish-Japanese Institute of Information Technology Computer Science Department Koszykowa 86, 02-008 Warszawa, Poland Kazimierz Wielki University of Bydgoszcz, Institute of Mechanics and Applied Computer Science Chodkiewicza 30, 85-064 Bydgoszcz, Pol, wkos@pjwstk.edu.pl
Bibliografia
- 1. M. Battezzati, Stationary action principle for dissipative systems with variable frictional forces, Nuovo Cimento, 125 B, 333–345, 2010.
- 2. M.A. Biot, Variational Principles in Heat Transfer, Oxford Mathematical Monographs, Oxford Univ. Press, 1970.
- 3. I.G. Chambers, A variational principle for the conduction of heat, Q. J. Mech. Appl. Math., IX, 2, 234–235, 1956.
- 4. P. Germain, Functional concepts in continuum mechanics, Meccanica, 33, 5, 433–444, 1998.
- 5. B. Grochowicz, W. Kosiński, Lagrange’s method for derivation of long line equations, Acta Technica, 56, 3, 331–341, 2011.
- 6. R. Kotowski, Metody opisu zjawiska dyssypacji w mechanice, Rozprawa habilitacyjna. Prace IPPT — IFTR Reports, 10/2006.
- 7. R. Kotowski, On the Lagrange functional for dissipative processes, Arch. Mech., 41, 4, 571–587, 1989.
- 8. R. Kotowski, Hamilton’s principle in thermodynamics, Arch. Mech., 44, 2, 203–215, 1992.
- 9. R. Kotowski, E. Radzikowska, Variational approach to the thermo-electrodynamics of liquid crystals, Int. J. Engng Sci., 37, 771–802, 1999.
- 10. J. Lambermont, G. Lebon, A rather general variational principle for purely dissipative non-stationary processes, Ann. der Phys., 483, 1, 15–30, 1972.
- 11. G. Lebon, J. Lambermont, Genera1ization of Hamilton’s princip1e to continuous dissipative systems, J. Chem. Phys., 59, 2929–2936, 1973.
- 12. T. Levi-Civita, U. Amaldi, Lezioni di Meccanica Razionale, Bologna 1927.
- 13. Hughes, E. Marsden, T. J. R. Hughes, Mathematical Theory of Elasticity, Prentice-Hall, Englewood Cliffs, New York, 1983.
- 14. P. Perzyna, Thermodynamics of Inelastic Materials, PWN, Warszawa, 1978 [in Polish].
- 15. P. Perzyna, The thermodynamical theory of elasto-viscoplasticity, Engng. Transaction, 53, 235–316, 2005.
- 16. I. Prigogine, P. Glansdorff, Variational properties and fluctuation theory, Physica, 31, 8, 1242-–1256, 1965.
- 17. P. Rosen, Use of restricted variational principles for he solution of differential equations, J. Appl. Phys., 25, 336–338, 1954.
- 18. J. Rychlewska, Modelling of differential equations, Sec. 3, [in:] Mathematical Modelling and Analysis in Continuum Mechanics ofMicrosrtucturedMedia. ProfessorMargaretWoźniak pro memoriam, J. Awrejcewicz et. al. [Eds.], Wydawnictwo Politechniki Śląskiej, Gliwice 2010, pp. 24–39.
- 19. R.S. Schechter, The Variational Methods in Engineering. McGraw-Hill, New York, 1967.
- 20. C. Stolz, Functional approach in non linear dynamics, Arch. Mech., 47, 3, 421–435, 1995.
- 21. G.P. Tolstov, On the second mixed derivative, Mat. Sb., 24, 1, 27–51, 1949 [in Russian].
- 22. B. Vujanvić, An approach to linear and non-linear heat transfer problem using a Lagrangian, A.I.A.A. Journal, 9, 1, 131–134, 1971.
- 23. B. Vujanović, A variational principle for non-conservative dynamical systems, ZAMM– Zeitschrift für Angewandte Mathematik und Mechanik, 55, 6, 321–331, 1975.
- 24. B. Vujanović, On one variational principle for irreversible phenomena, Acta Mechanica, 19, 259–275, 1974.
- 25. B. Vujanović, D. Djukić, On one variational principle of Hamilton’s type for nonlinear heat transfer problem, International Journal of Heat and Mass Transfer, 15, 1111–1123, 1972.
- 26. Q. Yang, Hamilton’s principle for Green-inelastic bodies, Mechanical Research Communications, 37, 696–699, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0009-0065