PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical models of biofluid flows in compliant ducts

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A literature review of liquid and gas flows in compliant tubes, ducts and cavities in living bodies is presented. The common features of such flows as determined by fluid–structure interactions and system instabilities are described. The corresponding mathematical models are given and theoretical and numerical results are discussed. Original new results on flow stabilization in layered viscoelastic tubes in biosystems are also presented.
Rocznik
Strony
65--65
Opis fizyczny
–-94, Bibliogr. 84 poz.
Twórcy
autor
autor
  • Department of Theoretical Mechanics Kharkov National University Svobody Sq. 4, 61195 Kharkov, Ukraine, nnk_@bk.ru
Bibliografia
  • 1. T.J. Pedley, X.Y. Luo, Modelling flow and oscillations in collapsible tubes, Theoretical and Computational Fluid Dynamics, 10, 277–294, 1998.
  • 2. T.J. Pedley, Mathematical modeling of arterial fluid dynamics, Journal Engineering Mathematics, 47, 419–444, 2003.
  • 3. M. Heil, O.E. Jensen, Flows in deformable tubes and channels—Theoretical models and biological applications, [in:] Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, T.J. Pedley, P.W. Carpenter [Eds.], pp. 15–49, Kluwer, Dordrecht, The Netherlands, 2003.
  • 4. V. Kumaran, Hydrodynamic stability of flow through compliant channels and tubes, [in:] Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, T.J. Pedley, P.W. Carpenter [Eds.], pp. 95–118, Kluwer, Dordrecht, The Netherlands, 2003.
  • 5. J.B. Grotberg, O.E. Jensen, Biofluid mechanics in flexible tubes, Annual Review of Fluid Mechanics, 36, 121–147, 2004.
  • 6. J.C. Guneratne, T.J. Pedley, High-Reynolds-number steady flow in a collapsible channel, Journal of Fluid Mechanics, 569, 151–184, 2006.
  • 7. M. Heil, A.L. Hazel, Fluid-Structure Interaction in Internal Physiological Flows, Annual Review of Fluid Mechanics, 43, 141–162, 2011.
  • 8. T.J. Pedley, P.W. Carpenter [Eds.], Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, Kluwer, Dordrecht, The Netherlands, 2003.
  • 9. C.D. Bertram, Experimental studies of collapsible tubes, in Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, T.J. Pedley, P.W. Carpenter [Eds.], pp. 51–65, Kluwer, Dordrecht, The Netherlands, 2003.
  • 10. C.D. Bertram, J. Tscherry, The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes, International Journal of Solids and Structures, 22, 1029–1045, 2006.
  • 11. F.P. Knowlton, E.H. Starling, The influence of variations in temperature and blond pressure on the performance of the isolated mammalian heart, Journal of Physiology, 44, 206–219, 1912.
  • 12. C.D. Bertram, R.J. Castles, Flow limitation in uniform thick-walled collapsible tubes, International Journal of Solids and Structures, 13, 399–418, 1999.
  • 13. C.D. Bertram, T.J. Pedley, A mathematical model of unsteady collapsible tube behaviour, Journal of Biomechanics, 15, 39–50, 1982.
  • 14. C.D. Bertram, Flow-induced oscillation of collapsed tubes and airway structures, Respiratory Physiology and Neurobiology, 163, 256–265, 2008.
  • 15. M. Bonis, C. Ribreau, Etude de quelques propriétés de l’écoulement dans une conduite collabable, La Houille Blanche, 4, 165–173, 1978.
  • 16. N. Gavriely, T.R. Shee, D.W. Cugell, J.B. Grotberg, Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes, Journal of Applied Physiology, 66, 2251–2261, 1989.
  • 17. R.W. Brower, C. Scholten, Experimental evidence on the mechanism for the instability of flow in collapsible vessels, Medical Biological Engineering, 13, 839–845, 1975.
  • 18. D.J. Griffiths, Urethral elasticity and micturition hydrodynamics in females, Medical and Biological Engineering, 7, 201–215, 1969.
  • 19. D.J. Griffiths, Hydrodynamics of male micturition, Medical and Biological Engineering, 9, 589–596, 1969.
  • 20. J.B. Grotberg, N. Gavriely, Flutter in collapsible tubes: a theoretical model of wheezes, Journal of Applied Physiology, 66, 2262–2273, 1989.
  • 21. T. Yamane, T. Orita, Self-excited oscillations with and without supercritical flow In collapsible tubes, in Proceedings of the 7th International Conference on Biomedical Engineering, pp. 502–504, Singapore, 1992.
  • 22. W.A. Conrad, M.L. Cohen, D.M. Mc Queen, Note on the oscillations of collapsible tubes, Medical and Biological Engineering and Computing, 16, 211–214, 1978.
  • 23. T.J. Pedley, B.S. Brook, R.S. Seymour, Blood pressure and flow rate in the giraffe jugular vein, Philosophical Transactions of Royal Society London, Ser. B, 351, 855–866, 1996.
  • 24. W.A. Conrad, Pressure-flow relationships in collapsible tubes, IEEE Transactions on Biomedical Engineering, 16, 284–295, 1969.
  • 25. O. Frank, Die Theorie der Pulswellen, Zeitschrift für Biologie, 85, 91–130, 1926.
  • 26. D.W. Schoendorfer, A.H. Shapiro, The collapsible tube as a prosthetic vocal source, Proceedings San Diego Biomedical Symposium, 16, pp. 349–356, San Diego, California, 1977.
  • 27. A.I. Katz, Y. Chen, A.H. Moreno, Flow through a collapsible tube (experimental analysis and mathematical model), Biophysical Journal, 9, 1261–1279, 1969.
  • 28. T.J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, UK, 1980.
  • 29. A.H. Shapiro, Steady flow in collapsible tubes, Journal of Biomechanical Engineering, 99, 126–147, 1977.
  • 30. C. Cancelli, T.J. Pedley, A separated-flow model for collapsible-tube oscillations, Journal of Fluid Mechanics, 157, 375–404, 1985.
  • 31. P. Morgan, K.H. Parker, A mathematical model of flow through a collapsible tube. I. Model and steady flow results, Journal of Biomechanics, 22, 1263–1270, 1989.
  • 32. J.R. Womersley, An elastic tube theory of pulse transmission and oscillatory flow In mammalian arteries, Wright Air Development Center, Wright-Patterson Air Force Base, Technical Report TR-56-614, Dayton, Ohio, 1957.
  • 33. B.N. Schaaf, D.H. Abbrecht, Digital computer simulation of the human systemie arterial pulse wave transmission: a nonlinear model, Journal of Biomechanics, 5, 345–364, 1972.
  • 34. J.H. Olsen, A.H. Shapiro, Large-amplitude unsteady flow in liquid-filled elastic tubes, Journal of Fluid Mechanics, 29, 513–538, 1967.
  • 35. O.E. Jensen, T.J. Pedley, The existence of steady flow in a collapsed tube, Journal of Fluid Mechanics, 206, 333–374, 1989.
  • 36. O.E. Jensen, Instabilities of flow in a collapsed tube, Journal of Fluid Mechanics, 220, 623–659, 1990.
  • 37. W.M. Bayliss, On the local reactions of the arterial wall to changes of internal pressure, Journal of Physiology, 28, 220–231, 1902.
  • 38. S.A. Regirer, N.H. Shadrina, Elementary model of a vessel with the wall sensitive to mechanical stimuli, Biophysics, 47, 908–913, 2002 [in Russian].
  • 39. S.A. Regirer, I.M. Skobeleva, Flow of a viscous liquid in a deformable tube with Poros wall, Izvestija Akademy Nauk of the SSSR, Ser. Mekhanika Zhidkosti i Gaza, 3, 118–131, 1971 [in Russian].
  • 40. S.A. Regirer, I.M. Rutkevich, P.I. Usik, A model of vascular tone, Mechanics of polymers, 4, 585–589, 1975 [in Russian].
  • 41. E.E. Kireeva, B.N. Klochkov, Nonlinear model of vascular tone, Mechanics of Composite Materials, 5, 887–894, 1982 [in Russian].
  • 42. X.Y. Luo, T.J. Pedley, A numerical simulation of unsteady flow in a 2-D collapsible channel, Journal of Fluids & Structures, 9, 149–174, 1995.
  • 43. X.Y. Luo, T.J. Pedley, The effects of wall inertia on flow in a two-dimensional collapsible channel, Journal of Fluid Mechanics, 363, 253–280, 1998.
  • 44. X.Y. Luo, T.J. Pedley, Multiple solutions and flow limitation in collapsible channel flows, Journal of Fluid Mechanics, 420, 301–324, 2000.
  • 45. X.Y. Luo, Z. Cai, W.G. Li, T.J. Pedley, The cascade structure of linear instability in collapsible channel flows, Journal of Fluid Mechanics, 600, 45–76, 2008.
  • 46. Z.X. Cai, X.Y. Luo, A fluid–beam model for flow in a collapsible channel, Journal of Fluids and Structures, 17, 125–146, 2003.
  • 47. A. Marzo, X.Y. Luo, C.D. Bertram, Axial-Flow Fluid-Structure Interactions. Threedimensional collapse and steady flow in thick-walled flexible tubes, Journal of Fluids and Structures, 20, 817–835, 2005.
  • 48. X.L. Yang, Y. Liu, J.M. Yang, Fluid-structure interaction in a pulmonary arteria bifurcation, Journal of Biomechanics, 40, 2694–2699, 2007.
  • 49. T.J. Pedley, Longitudinal tension variation in collapsible channels: a new mechanism for the breakdown of steady flow, ASME Journal of Biomechanical Engineering, 114, 60–67, 1992.
  • 50. Y.C. Fung, S.Q. Liu, Determination of the mechanical properties of the different layers of blood vessels in vivo, Proceedings of the National Academy of Sciences, 92, 2169–2173, 1995.
  • 51. G.A. Holzapfel, T.C. Gasser, R.W. Ogden, Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability, Journal of Biomechanical Engineering, 126, 264–275, 2004.
  • 52. R.P. Vito, S.A. Dixon, Blood vessel constitutive models—1995–2002, Annual Review of Biomedical Engineering, 5, 413–439, 2003.
  • 53. T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, Journal of the Royal Society Interface, 3, 15–35, 2006.
  • 54. J.D. Hartman, Structural changes within the media of coronary arteries related to intimal thickening, American Journal of Pathology, 89, 13–34, 1977.
  • 55. P.B. Canham, H.M. Finlay, J.G. Dixon, D.R. Boughner, A. Chen, Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure, Cardiovascular Research, 23, 973–982, 1989.
  • 56. R.J. Coulson, M.J. Cipolla, L. Vitullo, N.C. Chesler, Mechanical properties of rat middle cerebral arteries with and without myogenic tone, Journal of Biomechanical Engineering, 126, 76–81, 2004.
  • 57. M. Hamadiche, M. Gad-el-Hak, Spatiotemporal Stability of Flow through Collapsible, viscoelastic tubes, AIAA Journal, 42, 772–786, 2004.
  • 58. M. Hamadiche, M. Gad-el-Hak, Temporal Stability of Flow through Viscoelastic Tubes, Journal of Fluids & Structures, 16, 331–359, 2002.
  • 59. M. Hamadiche, Instabilité absolute et convective de l’écoulement de Poiseuille en conduite viscoélastique, Comptes Rendus de l’Académie des Sciences, Paris, 330,769–775, 2002.
  • 60. M. Hamadiche, Flux d’énergie d’un écoulement de Poiseuille vers la paroi d’un Tube Elastique. a. Modes d’instabilité axisymétrique, Comptes Rendus de l’Académie des Sciences, Paris, 327, Série II b, 115–1161, 1999.
  • 61. M. Hamadiche, Flux d’énergie d’un écoulement de Poiseuille vers la paroi d’un tube élastique. b. Modes d’Instabilité non Axisymétrique, Comptes Rendus de l’Académie des Sciences, Paris, 327, Série II b, 116–1170, 1999.
  • 62. M. Hamadiche, Absolute and convective instabilities of Poiseuille flow in viscoélastic tube, Euromech Fluid Mechanics Conferences, Toulouse, France, 24–28 August, 2003.
  • 63. M. Hamadiche, N. Kizilova, Temporal and spatial instabilities of the flow in the blond vessels as multi-layered compliant tubes, International Journal of Dynamics of Fluids, 1, 1–23, 2005.
  • 64. M. Hamadiche, N. Kizilova, M. Gad-el-Hak, Suppression of absolute instabilities In the flow inside a compliant tube, Communications in Numerical Methods in Engineering, 25, 505–531, 2009.
  • 65. N. Kizilova, M. Hamadiche, M. Gad-el-Hak, Flow in compliant tubes: control and stabilization by multilayered coatings, International Journal of Flow Control, 1, 199–211, 2009.
  • 66. M. Hamadiche, N. Kizilova, Flow interaction with composite wall, Proceedings of the ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia, 23–27 July, 2006.
  • 67. P.W. Carpenter, P.J. Morris, The hydrodynamic stability of flows over non-isotropic compliant surfaces—Numerical solution of the differential eigenvalue problem, in Numerical Methods in Laminar and Turbulent Flows, pp. 1613–1620, Pineridge Press, Swansea, Wales, UK, 1985.
  • 68. P.W. Carpenter, A.D. Garrad, The hydrodynamic stability of flows over Kramer-type compliant surfaces, Part 2. Flow-induced surface instabilities, Journal of Fluid Mechanics, 170, 199–232, 1986.
  • 69. O.E. Jensen, M. Heil, High-frequency self-excited oscillations in a collapsible-channel flow, Journal of Fluid Mechanics, 481, 235–268, 2003.
  • 70. M. Heil, S.L. Waters, Transverse flows in rapidly oscillating elastic cylindrical shells, Journal of Fluid Mechanics, 547, 185–214, 2006.
  • 71. M. Heil, S.L. Waters, How rapidly oscillating collapsible tubes extract energy from a viscous mean flow, Journal of Fluid Mechanics, 601, 199–227, 2008.
  • 72. M. Heil, J. Boyle, Self-excited oscillations in three-dimensional collapsible tubes: simulating their onset and large-amplitude oscillations, Journal of Fluid Mechanics, 652, 405–426, 2010.
  • 73. P.S. Stewart, M. Heil, S.L. Waters, O.E. Jensen, Sloshing and slamming oscillations in a collapsible channel flow, Journal of Fluid Mechanics, 662, 288–319, 2010.
  • 74. R.J.Whittaker, S.L. Waters, O.E. Jensen, J.H. Boyle, M. Heil, The energetics of flow through a rapidly oscillating tube. Part 1. General theory, Journal of Fluid Mechanics, 648, 83–121, 2010.
  • 75. R.J. Whittaker, M. Heil, J.H. Boyle, O.E. Jensen, S.L. Waters, The energetics of flow through a rapidly oscillating tube. Part 2. Application to an elliptical tube, Journal of Fluid Mechanics, 648, 123–153, 2010.
  • 76. R.J. Whittaker, M. Heil, O.E. Jensen, S.L. Waters, Predicting the onset of highfrequency self-excited oscillations in elastic-walled tubes, Proceedings of the Royal Society A, 466, 3635–3657, 2010.
  • 77. M.E. Rosar, S.P. Charles, Fluid flow in collapsible elastic tubes: a three-dimensional numerical model, New York Journal of Mathematics, 7, 281–302, 2001.
  • 78. B. Liu, D. Tang, A numerical simulation of viscous flows in collapsible tubes with stenoses, Applied Numerical Mathematics, 32, 87–101, 2000.
  • 79. T. Dali, Y. Chun, K. Shunici, D.N. Ku, Experiment-based numerical simulation of unsteady viscous flow in stenotic collapsible tubes, Applied Numerical Mathematics, 36, 299–320, 2001.
  • 80. L. Huang, Viscous flutter of a finite elastic membrane in Poiseuille flow, Journal of Fluids and Structures, 15, 1061–1088, 2001.
  • 81. D. Tang, C. Yang, H. Walker, S. Kobayashi, D.N. Ku, Simulating cyclic artery compression using a 3D unsteady model with fluid–structure interactions, Computers and Structures, 80, 1651–1665, 2002.
  • 82. Y. Zhu, X.Y. Luo, R.W. Ogden, Nonlinear axisymmetric deformations of an elastic tube under external pressure, European Journal of Mechanics – A/Solids, 29, 216–229, 2010.
  • 83. V. Oruç, M.Ö. Çarpnlio˜glu, Theoretical approximations to analyse the onset of selfexcited oscillations in flow through collapsible tubes, Journal of Mechanical Engineering Science, 224, 337–343, 2010.
  • 84. Y. Zhao, A. Forhad, General method for simulation of fluid flows with moving and compliant boundaries on unstructured grids, Computer Methods in Applied Mechanics and Engineering, 192, 4439–4466, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0009-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.