PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Faxén’s law for arbitrary oscillatory Stokes flow past a porous sphere

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present article deals with the study of the hydrodynamics of a porous sphere in an oscillatory viscous flow of an incompressible Newtonian fluid. Unsteady Stokes equations are used for the flow outside the porous sphere and Darcy’s equation is used for the flow inside the porous sphere. Corresponding Faxén’s law for drag and torque acting on the surface of the porous sphere is derived. Also the results are compared with few existing special cases. Examples like uniform flow, oscillating Stokeslet, oscillatory shear flow and quadratic shear flow are discussed.
Rocznik
Strony
41--41
Opis fizyczny
–-63, Bibliogr. 31 poz.
Twórcy
autor
autor
  • Department of Mathematics Indian Institute of Technology Kharagpur Kharagpur 721 302, India, jai.kgp@gmail.com
Bibliografia
  • 1. J.J.L. Higdon, M. Kojima, On the calculation of Stokes flow past porous particles, Int. J. Multiphase Flow, 7, 719–727, 1981.
  • 2. Y. Qin, P.N. Kaloni, Creeping flow past a porous spherical shell, Z. Angew. Math. Mech., 73, 77–84, 1983.
  • 3. D. Palniappan, Arbitrary Stokes flow past a porous sphere, Mech. Res. Comm., 20, 309–317, 1993.
  • 4. B.S. Padmavathi, T. Amaranath, S.D. Nigam, Stokes flow past a porous sphere Rusing Brinkman’s model, Z. Angew. Math. Phys., 44, 929–939, 1993.
  • 5. G.P. Raja Sekhar, T. Amaranath, Stokes flow inside a porous spherical shell, Z. Angew. Math. Phys., 51, 481–490, 2000.
  • 6. Z.-G. Feng, E.E. Michaelides, Motion of a permeable sphere at finite but small Reynolds numbers, Phys. Fluids, 10, 1375–1383, 1998.
  • 7. A.M. Chapman, J.J.L. Higdon, Oscillatory Stokes flow in periodic porous media, Phys. Fluids, A4, 2099–2116, 1992.
  • 8. D.R. Graham, J.J.L. Higdon, Oscillatory forcing of flow through porous media. Part 1. Steady flow, J. Fluid. Mech., 465, 213–235, 2002.
  • 9. J.R. Looker, S.L. Carnie, The hydrodynamics of an oscillating porous sphere, Phys. Fluids, 16, 62–72, 2004.
  • 10. A. Mikelic, Homogenization of nonstationary Navier–Stokes equations in a domain with a grained boundary, Ann. Mat. Pura Appl., 158, 167–179, 1991.
  • 11. G.V. Sandrakov, Homogenization of non-stationary Stokes equations with viscosity In a perforated domain, IZV MATH, 61, 113–141, 1997.
  • 12. C. Dragon, J. Grotberg, Oscillatory flow and mass-transport in a flexible tube, J. Fluid Mech., 231, 135–155, 1991.
  • 13. J. Dursting, J. Sheridan, K. Hourigan, A fluid dynamic approach to bioreactor design for cell and tissue culture, Biotech. Bioeng., 94, 1197–1208, 2006.
  • 14. X. Ni, M.R. Mackley, A.P. Harvey, P. Stonestreet, M.H.I. Baird, N.V. Rama Rao, Mixing through oscillations and pulsations - A guide to achieving process enhancements in the chemical and process industries, Chem. Eng. Res. Des., 81, 373–383, 2003.
  • 15. B.D. Crittenden, A. Lau, T. Brinkmann, R.W. Field, Oscillatory flow and Arial dispersion in packed beds of spheres, Chem. Eng. Sci., 60, 111–122, 2005.
  • 16. O. Umnova, K. Attenborough, K.M. Li, Cell model calculations of dynamic drag parameters in packings of spheres, J. Acoust. Soc. Am., 107, 3113–3119, 2000.
  • 17. P. Vainshtein, M. Shapiro, Forces on a porous particle in an oscillating flow, J. Colloid Interface Sci., 330, 149–155, 2009.
  • 18. G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197–207, 1967.
  • 19. P.G. Saffman, On the boundary condition at the surface of a porous medium, Stud. Appl. Math., 50, 93–101, 1971.
  • 20. G. Neale, N. Epstein, W. Nader, Creeping flow relative to permeable spheres, Chem. Eng. Sci., 28, 1865–1874, 1973.
  • 21. R.H. Davis, H.A. Stone, Flow through beds of porous particles, Chem. Eng. Sci., 48, 3993–4005, 1993.
  • 22. G.P. Raja Sekhar, B.S. Padmavathi, T. Amaranath, Complete general solution of Brinkman equations, Z. Angew. Math. Mech., 77, 555–556, 1997.
  • 23. G.I. Taylor, A model for the boundary condition of a porous material, Part 1, J. Fluid Mech., 49, 319–326, 1971.
  • 24. S. Richardson, A model for the boundary condition of a porous material, Part 2, J. Fluid Mech., 49, 327–336, 1971.
  • 25. G.P. Raja Sekhar, T. Amaranath, Stokes flow past a porous sphere with an impermeable core, Mech. Res. Comm., 23, 449–460, 1996.
  • 26. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Flow, Cambridge Univ. Press, Cambridge, 1992.
  • 27. S. Kim, S.Y. Lu, The functional similarity between Faxen relations and singularity solutions for fluid-fluid, fluid-solid and solid-solid dispersions, Int. J. Multiphase Flow, 13, 837–844, 1987.
  • 28. M. Kohr, I. Pop, Viscous Incompressible Flow for Low Reynolds Numbers, WIT Press, Southampton, 2004.
  • 29. C. Pozrikidis, A singularity method for unsteady linearized flow, Phys. Fluids, A1, 1508–1520, 1989.
  • 30. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, 1991.
  • 31. I.D. Howells, Drag due to the motion of a newtonian fluid through a sparse random array of small fixed rigid objects, J. Fluid Mech., 64, 449–476, 1974.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0009-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.