PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and simulation of the curing process of polymers by a modified formulation of the Arruda–Boyce model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A phenomenologically motivated small strain model and a finite strain general framework to simulate the curing process of polymer have been developed and discussed in our recently published papers [1, 2, 3, 4]. In order to illustrate the capability of the finite strain framework proposed earlier, only the micromechanically-inspired 21-chain model and the phenomenologically motivated Neo-Hookean model (energy function) have been demonstrated so far. The Arruda–Boyce model (well-known as the 8-chain model in the elastic case and Bergström–Boyce model [5, 14] in the viscoelastic case) is a prototype hyperelastic model for polymeric materials. This follow-up contribution presents an extension of the Arruda–Boyce model [6] towards modelling the curing process of polymers. The necessary details, i.e. the stress tensor and the tangent operator, for the numerical implementation within the finite element method, are derived. The curing process of polymers is a complicated process where a series of chemical reactions have been activated, which will convert low molecular weight monomer solutions into more or less cross-linked solid macromolecular structures via the chemical conversion. This paper will model the elastic behaviour and shrinkage effects of the polymer curing process in the isothermal case using the Arruda–Boyce model. Several numerical examples have been demonstrated to verify our newly proposed, modified approach in case of curing process.
Słowa kluczowe
Rocznik
Strony
621--621
Opis fizyczny
–-633, Bibliogr. 25 poz.
Twórcy
autor
autor
Bibliografia
  • 1. M. Hossain, G. Possart, P. Steinmann, A small-strain model to simulate the curing of thermosets, Computational Mechanics, 43, 6, 769–779, 2009.
  • 2. M. Hossain, G. Possart, P. Steinmann, A finite strain framework for the simulation of polymer curing. Part-I: Elasticity, Computational Mechanics, 44, 621–630, 2009.
  • 3. M. Hossain, G. Possart, P. Steinmann, A finite strain framework for the simulation of polymer curing. Part-II: Viscoelasticity and shrinkage, Computational Mechanics, 45, 1, 210–129, 2010.
  • 4. M. Hossain, Modelling and computation of polymer curing, Dissertation, University of Erlangen-Nuremberg, Germany, 2010.
  • 5. J.S. Bergström, M.C. Boyce, Constitutive Modeling of the large strain time-dependent behaviour of elastomers, Journal of Mechanics and Physics of Solids, 46, 931–954, 1998.
  • 6. E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials, Journal of Mechanics and Physics of Solids, 41, 389–412, 1993.
  • 7. H. Dal, M. Kaliske, Bergström–Boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the FE method, Computational Mechanics, 44, 6, 809–823, 2010.
  • 8. A. Lion, P. Höfer, On the phenomenological representation of curing phenomena In continuum mechanics, Archives of Mechanics, 59, 59–89, 2007.
  • 9. A. Lion, B. Yagimli, G. Baroud, U. Goerke, Constitutive modelling of PMMA-based bone cement: a functional model of viscoelasticity and its approximation for time domain investigations, Archives of Mechanics, 60, 3, 221–242, 2008.
  • 10. D.B. Adolf, J.E. Martin, Calculation of stresses in cross-linking polymers, Journal of Composite Materials, 30, 13–34, 1996.
  • 11. D.B. Adolf, J.E. Martin, R.S. Chambers, S.N. Burchett, T.R. Guess, Stresses during thermoset cure, Journal of Material Research, 13, 530–550, 1998.
  • 12. D.B. Adolf, R.S. Chambers, A thermodynamically consistent, nonlinear viscoelastic approach for modelling thermosets during cure, Journal of Rheology, 51, 23–50, 2007.
  • 13. M. Kiasat, Curing shrinkage and residual stresses in viscoelastic thermosetting resins and composites, PhD Thesis, TU Delft, The Netherlands, 2000.
  • 14. H. Dal, M. Kaliske, A micro-continuum-mechanical material model for failure of rubber-like materials: Application to ageing-induced fracturing, Journal of Mechanics and Physics of Solids, 57, 8, 1340–1356, 2009.
  • 15. J. Retka, P. Höfer, Numerische Simulation aushärtender Klebstoffe, Diploma Thesis, Universität der Bundeswehr München, 2007.
  • 16. J. Diani, P. Gilormini, Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials, Journal of the Mechanics and Physics of Solids, 53, 2579–2596, 2005.
  • 17. J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 1997.
  • 18. P. Wriggers, Nonlinear Finite Element Methods. Springer, Berlin 2008.
  • 19. M.C. Boyce, E.M. Arruda, Constitutive models of rubber elasticity: a review, Rubber Chemistry and Technology, 73, 504–523, 2000.
  • 20. C. Miehe, S. Göktepe, F. Lulei, A micro-macro approach to rubber-like materials: Part-I. The non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, 52, 2617–2660, 2004.
  • 21. F. Lulei, Mikromechanisch motivierte Modelle zur Beschreibung finiter Deformationen gummiartiger Polymere: Physikalische Modellbildung und Numerische Simulation, PhD Thesis, Institut für Mechanik (Bauwesen), University of Stuttgart, 2002.
  • 22. S. Göktepe, Micro-macro approaches to rubbery and glassy polymers: Predictive micromechanically-based models and simulations, PhD Thesis, Institut für Mechanik (Bauwesen), University of Stuttgart, 2007.
  • 23. W. Kuhn, F. Grün, Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe, Kolloid-Zeitschrift, 101, 248–271, 1942.
  • 24. D.J. O’Brien, P.T. Mather, S.R. White, Viscoelastic properties of an epoxy resin during cure, Journal of Composite Materials, 35, 883–904, 2001.
  • 25. S.R. White, H.T. Hahn, Process modeling of composite materials: residual stress development during cure. Part I. Model formulation, Journal of Composite Materials, 26, 2402–2422, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0009-0060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.