PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of the effect of prerelaxation on the nanoindentation process of crystalline copper

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines how prerelaxation effects the development of the mechanics of a nanoindentation simulation. In particular, the force-depth relation, indentation stress-strain curves, hardness and elastic modulus, are investigated through molecular statics simulations of a nanoindentation process, starting from initial relaxation by: (i) molecular dynamics and (ii) molecular statics. It is found that initial relaxation conditions change the quantitative response of the system, but not the qualitative response of the system. This has a significant impact on the computational time and quality of the residual mechanical behaviour of the system. Additionally, the method of determining of the elastic modulus is examined for the spherical and planar indenter; and the numerical results are compared. An overview of the relationship between the grain size and hardness of polycrystalline copper is examined and conclusions are drawn.
Rocznik
Strony
533--533
Opis fizyczny
–-548, Bibliogr. 36 poz.
Twórcy
autor
autor
  • Department of Computational Science Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5b 02–106 Warsaw, Poland, mmazdz@ippt.gov.pl
Bibliografia
  • 1. G.J. Ackland, A.P. Jones, Applications of local crystal structure measures in experiment and simulation, Phys. Rev. B, 73, 2006.
  • 2. A.V. Bolesta, V.M. Fomin, Molecular dynamics simulation of sphere indentation In a thin copper film, 12, 3–4, 117, 2009.
  • 3. F. Cleri, V. Rosato, Tight-binding potentials for transition metals and alloys, Phys. Rev. B, 48, 1993.
  • 4. H. Conrad, J. Narayan, On the grain size softening in nanocrystalline materials, Scripta Materialia, 42, 11, 2000.
  • 5. P. Dłużewski, P. Traczykowski, Numerical simulation of atomic positions in quantum dot by means of molecular statics, Archives of Mechanics, 55, 2003. Effect of prerelaxation on the nanoindentation process 547
  • 6. D. Feichtinger, P.M. Derlet, H. Van Swygenhoven, Atomistic simulations of spherical indentations in nanocrystalline gold, Phys. Rev. B, 67, 2003.
  • 7. A.C. Fischer-Cripps, Nanoindentation, Springer-Verlag, New York, USA, 2004.
  • 8. Y.-R. Jeng, Ch.-M. Tan, Static Atomistic Simulations of Nanoindentation and Determination of Nanohardness, J. Appl. Mech., 72, 2005.
  • 9. S. P. Ju, C.T. Wang, C.H. Chien, J.C. Huang, S.R. Jian, The nanoindentation responses of nickel surfaces with different crystal orientations, Mol. Simul., 33, 2007.
  • 10. E. Kimmari, L. Kommel, Application of the continuous indentation test method for the characterization of mechanical properties of B4C/Al composites, Proc. Estonian Acad. Sci. Eng., 12, 2006.
  • 11. J. Knap, M. Ortiz, An analysis of the quasicontinuum method, J. Mech. Phys. Solids, 49, 2001.
  • 12. A. Latapie, D. Farkas, Molecular dynamics investigation of the fracture behavior of nanocrystalline α–Fe, Phys. Rev. B, 69, 2004.
  • 13. J. Li, AtomEye: an efficient atomistic configuration viewer, Modelling Simul. Mater. Sci. Eng., 11, 2003.
  • 14. H. Liang, C.H. Woo, Hanchen Huang, A.H.W. Ngan, T.X. Yu, Crystalline Plasticity on Copper (001), (110), and (111) Surfaces during Nanoindentation, Comp. Model. Eng. Sci., 6, 2004.
  • 15. H.Y. Liang, C.H. Woo, Hanchen Huang, A.H.W. Ngan, T.X. Yu, Dislocation nucleation in the initial stage during nanoindentation, Phil. Mag., 83, 2003.
  • 16. Y.-H. Lin, T.C. Chen, A molecular dynamics study of phase transformation In monocrystalline Si under nanoindentation, Appl. Phys. A, 92, 571, 2008.
  • 17. M. Maździarz, T.D. Young, P. Dłużewski, T. Wejrzanowski, K.J. Kurzydlowski, Computer modelling of nanoindentation in the limits of a coupled molecular–statics and elastic scheme, J. Comput. Theor. Nanosci., 7, 1172, 2010.
  • 18. A.J. Moseson, Spherical Nanoindentation: Insights and Improvements, Including Stress-Strain Curves and Effective Zero Point Determination, M.Sc. Thesis, Drexel University, Philadelphia, USA, 2007.
  • 19. A.K. Nair, D. Farkas, R.D. Kritz, Molecular dynamics study of size effects and deformation of thin films due to nanoindentation, CMES, 24, 3, 239, 2008.
  • 20. A. Okabe, B. Boots, K. Sugihara, Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, John and Wiley & Sons, New York, USA, 1992.
  • 21. W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 19, 2004.
  • 22. S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 117, 1995, (http://lammps.sandia.gov).
  • 23. J.J. Roa, E. Jimenez-Pique, X.G. Capdevila, M. Segarra, Nanoindentation with spherical tips of single crystals of YBCO textured by the Bridgman technique: Determination of indentation stress-strain curves, J. of the European Ceramic Society, 30, 2010.
  • 24. Ch. Shangda, K.E. Fujiu, MD simulation of the effect of contact area and tip radius on nanoindentation, Science in China Ser. G Physics and Astronomy, 47, 2004.
  • 25. D.J. Shuman, A.L.M. Costa, M.S. Andrade, Calculating the elastic modulus from nanoindentation and microindentation reload curves, Materials Characterization, 58, 2007.
  • 26. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool, Modelling Simul. Mater. Sci. Eng., 18, 2010.
  • 27. D. Tabor, The Hardness of Metals, Oxford University Press, 2000.
  • 28. E.B. Tadmor, M. Ortiz, R. Philips, Quasicontinuum analysis of defects in solids, Phil. Mag., A73, 1996.
  • 29. Ch.-M. Tan, Y.-R. Jeng, Computer simulations of nanoindentation on Cu (111) with a void, Int. J. Sol. Struct., 46, 2009.
  • 30. T. Tsuru, Y. Shibutani, Y. Kaji, Nanoscale contact plasticity of crystalline metal: Experiment and analytical investigation via atomistic and discrete dislocation models, Acta Materialia, 58, 2010.
  • 31. H. van Swygenhovena, J.R. Weertman, Deformation in nanocrystalline metals, Materials Today, 9, 2006.
  • 32. O.G. Vinogradov, On reliability of molecular statics simulations of plasticity in crystals, Computational Materials Science, 50, 2010.
  • 33. K. Yashiro, A. Furuta, Y. Tomita, Nanoindentation on crystal/amorphous polyethylene: Molecular dynamics study, Comp. Mat. Sci., 38, 136, 2006.
  • 34. S. Yip, Handbook of Materials Modeling, Springer Science and Business Media, 2005.
  • 35. G. Ziegenhain, A. Hartmaier, H.M. Urbassek, Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals, J. Mech. Phys. Solids, 57, 2009.
  • 36. G. Ziegenhain, H.M. Urbassek, A. Hartmaier, Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: A simulational study, J. Appl. Phys., 107, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0009-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.