PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-dimensional analysis of a tensile test on a propellant with digital volume correlation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A full three-dimensional study of a tensile test on a sample made of polymerbonded propellant is presented. The analysis combines different tools, namely, X-ray microtomography of an in situ experiment, image acquisition and treatment, 3D volume correlation to measure three-dimensional displacement fields. It allows for global and local strain analyses prior to and after the peak load. By studying the correlation residuals, it is also possible to analyze the damage activity during the experiment.
Rocznik
Strony
459--478
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
autor
autor
autor
autor
  • Laboratoire de Mécanique et Technologie (LMT-Cachan) ENS Cachan/CNRS/UPMC/PRES UniverSud Paris 61 Avenue du Président Wilson F-94235 Cachan Cedex, France, francois.hild@lmt.ens-cachan.fr
Bibliografia
  • 1. H. Trumel, A. Dragon, A. Fanget, P. Lambert, A constitutive model for the dynamic and high-pressure behaviour of a propellant-like material: Part I: Experimental background and general structure of the model, Int. J. Num. Anal. Meth. Geomech., 25, 551–579, 2001.
  • 2. C. Nadot, H. Trumel, A. Dragon, Morphology-based homogenization for viscoelastic particulate composites: Part I: Viscoelasticity sole, Eur. J. Mech. A/Solids, 22, 89–106, 2002.
  • 3. M. Touboul, C. Nadot-Martin, A. Dragon, A. Fanget, A multi-scale “morphological approach” for highly-filled particulate composites: evaluation in hyperelasticity and first application to viscohyperelasticity, Arch. Mech., 59, 403–433, 2007.
  • 4. C. Nadot, A. Dragon, H. Trumel, A. Fanget, Damage modelling framework for viscoelastic particulate composites via a scale transition approach, J. Theo. Appl. Mech., 44, 553–583, 2006.
  • 5. S. Dartois, D. Halm, C. Nadot, A. Dragon, A. Fanget, Introduction of damage evolution in a scale transition approach for highly-filled particulate composites, Eng. Fract. Mech., 75, 3428–3445, 2008.
  • 6. J. Baruchel, J.-Y. Buffière, E. Maire, P. Merle, G. Peix, X-Ray Tomography In Material Sciences, Hermes Science, Paris, France, 2000.
  • 7. D. Bernard [Ed.], 1st Conference on 3D-Imaging of Materials and Systems 2008, ICMCB, Bordeaux, France, 2008.
  • 8. J.-Y. Buffière, E. Maire, P. Cloetens, G. Lormand, R. Fougères, Characterisation of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography, Acta Mater., 47, 1613–1625, 1999.
  • 9. L. Babout, E. Maire, J.-Y. Buffière, R. Fougères, Characterisation by X-Ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites, Acta Mater., 49, 11, 2055–2063, 2001.
  • 10. M. Preuss, P.J. Withers, E. Maire, J.-Y. Buffière, SiC single fibre fullfragmentation during straining in a Ti-6Al-4V matrix studied by synchrotron X-rays, Acta Mater., 50, 12, 3177–3192, 2002.
  • 11. P. Viot, D. Bernard, Impact test deformations of polypropylene foam samples followed by microtomography, J. Mater. Sci., 41, 1277–1279, 2006.
  • 12. P. Viot, D. Bernard, E. Plougonven, Polymeric foam deformation under dynamic loading by the use of the microtomographic technique, J. Mater. Sci., 42, 17, 7202–7213, 2007.
  • 13. H. Bart-Smith, A.-F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, H.N.G. Wadley, Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping, Acta Mater., 46, 10, 3583–3592, 1998.
  • 14. S. Roux, F. Hild, P. Viot, D. Bernard, Three-dimensional image correlation from X-Ray computed tomography of solid foam, Comp. Part A, 39, 8, 1253–1265, 2008.
  • 15. F. Hild, E. Maire, S. Roux, J.-F. Witz, Three-dimensional analysis of a compression test on stone wool, Acta Mat., 57, 3310–3320, 2009.
  • 16. P.J. Rae, S.J.P. Palmer, H.T. Goldrein, A.L. Lewis, J.E. Field, White-light digital image cross-correlation (DICC) analysis of the deformation of composite materials with random microstructure, Opt. Lasers Eng., 41, 635–648, 2004.
  • 17. J. Réthoré, G. Besnard, G. Vivier, F. Hild, S. Roux, Experimental investigation of localized phenomena using Digital Image Correlation, Phil. Mag., 88, 28–29, 3339–3355, 2008.
  • 18. M. Li, J. Zhang, C.Y. Xiong, J. Fang, J.M. Li, Y. Hao, Damage and fracture prediction of plastic-bonded explosive by digital image correlation processing, Opt. Lasers Eng., 43, 8, 856–868, 2005.
  • 19. H. Tan, C. Liu, Y. Huang, P.H. Geubelle, The cohesive law for the particle/matrix interfaces in high explosives, J. Mech. Phys. Solids, 53, 8, 1892–1917, 2005.
  • 20. C. Liu, B.W. Asay, M.G. Stout, Experimental investigation of the representative volume element size, [in:] C.M. Wang, G.R. Liu, K.K. Ang [Eds.], Proceedings Structural Stability and Dynamics, World Scientific Publishing Co., 997–1003, 2002.
  • 21. C.R. Siviour, D.M. Williamson, S.G. Grantham, S.J.P. Palmer, W.G. Proud, J.E. Field, Split Hopkinson Bar Measurements of PBXs, [in:] M.D. Furnish, Y.M. Gupta, J.W. Forbes [Eds.], Proceedings Shock compression on condensed matter, AIP, 804–807, 2004.
  • 22. B. Guo, H. Xie, P. Chen, Q. Zhang, Creep properties identification of PBX Rusing digital image correlation, Proc. SPIE, 7522, 2010, 2V.
  • 23. A.P. Hammersley, PyHST (High Speed Tomography in Python Version), http://www.esrf.eu/computing/scientific/HST/HST_REF/hst.html, last accessed Nov. 2010.
  • 24. J.-Y. Buffière, E. Maire, J. Adrien, J.-P. Masse, E. Boller, In Situ Experiments with X-ray Tomography: An Attractive Tool for Experimental Mechanics, Exp. Mech., 50, 289–305, 2010.
  • 25. O.C. Zienkievicz, R.L. Taylor, The Finite Element Method, 4th ed., McGraw-Hill, London, UK, 1989.
  • 26. M.A. Sutton, J.-J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, Springer, New York, NY, USA, 2009.
  • 27. B.K. Bay, T.S. Smith, D.P. Fyhrie, M. Saad, Digital volume correlation: threedimensional strain mapping using X-ray tomography, Exp. Mech., 39, 217–226, 1999.
  • 28. T.S. Smith, B.K. Bay, M.M. Rashid, Digital volume correlation including rotational degrees of freedom during minimization, Exp. Mech., 42, 3, 272–278, 2002.
  • 29. M. Bornert, J.-M. Chaix, P. Doumalin, J.-C. Dupré, T. Fournel, D. Jeulin, E. Maire, M. Moreaud, H. Moulinec, Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures, Inst. Mes. Métrol., 4, 43–88, 2004.
  • 30. E. Verhulp, B. van Rietbergen, R. Huiskes, A three-dimensional digital image correlation technique for strain measurements in microstructures, J. Biomech., 37, 9, 1313–1320, 2004.
  • 31. N. Limodin, J. Réthoré, J. Adrien, J.-Y. Buffière, F. Hild, S. Roux, Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source, Exp. Mech., 51, 6, 959–970, 2011.
  • 32. C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, [in:] Handbuch der Physik, S. Flügge [Ed.], Springer-Verlag, Berlin 1965.
  • 33. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc. London, A 241, 376–396, 1957.
  • 34. A. Benoit, S. Guérard, B. Gillet, G. Guillot, F. Hild, D. Mitton, J.-N. Périé, S. Roux, 3D analysis from micro-MRI during in situ compression on cancellous bone, J. Biomech., 42, 2381–2386, 2009.
  • 35. J. Réthoré, J.-P. Tinnes, S. Roux, J.-Y. Buffière, F. Hild, Extended threedimensional digital image correlation X3D-DIC), C. R. Mécanique, 336, 643–649, 2008.
  • 36. T. Black, T. Belytschko, Elastic crack growth in finite elements with minimal remeshing, Int. J. Num. Meth. Eng., 45, 601–620, 1999.
  • 37. N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Num. Meth. Eng., 46, 1, 133–150, 1999.
  • 38. J. Rannou, N. Limodin, J. Réthoré, A. Gravouil, W. Ludwig, M.-C. Baietto, J.-Y. Buffière, A. Combescure, F. Hild, S. Roux, Three-dimensional experimental and numerical multiscale analysis of a fatigue crack, Comp. Meth. Appl. Mech. Eng., 199, 1307–1325, 2010.
  • 39. H. Leclerc, J.-N. Périé, S. Roux, F. Hild, Integrated digital image correlation for the identification of mechanical properties, [in:] MIRAGE 2009, A. Gagalowicz, W. Philips [Eds.], Springer-Verlag, Berlin (Germany), LNCS 5496, 161–171, 2009.
  • 40. H. Leclerc, J.-N. Périé, S. Roux, F. Hild, Voxel-scale digital volume correlation, Exp. Mech., 51, 4, 479–490, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0009-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.