PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Slip at the surface of a general axi-symmetric body rotating in a viscous fluid

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rotational motion of an arbitrary axi-symmetric body in a viscous fluid is discussed using a combined analytical-numerical technique. A singularity method based on a continuous distribution of a set of Sampson spherical singularities, namely Sampsonlets, along the axis of symmetry within the body, is applied to find the general solution for the fluid velocity that satisfies the general slip boundary condition. Employing a constant and linear approximation for the density functions and applying the collocation technique to satisfy the slip boundary condition on the surface of the body, a system of linear algebraic equations is obtained to be solved numerically. The couple exerted on a prolate and oblate spheroid and on a prolate and oblate Cassini ovals is evaluated for various values of the aspect ratio a/b and for different values of the slip parameter, where a and b are the major and minor semi-axes of the particle respectively. The CPU time elapsed during numerical calculations is measured and tabulated. Numerical work shows that convergence to at least six decimal places is achieved.
Rocznik
Strony
341--361
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Department of Mathematics Faculty of Science Alexandria University Alexandria, Egypt, emad_ashm@yahoo.com
Bibliografia
  • 1. R.P. Kanwal, Slow steady rotation of axially symmetric bodies in a viscous fluid, J. Fluid Mech., 10, 17–24, 1960.
  • 2. G.B. Jeffrey, On the steady rotation of a solid of revolution in a viscous fluid, Proc. Lond. Math. Soc., 14, 327–338, 1915.
  • 3. H. Brenner, The Stokes resistance of an arbitrary particle – Part V. Symbolic operator representation of intrinsic resistance, Chem. Eng. Sci., 21, 97–109, 1966.
  • 4. Z. Yu, N. Phan-Thien, R.I. Tanner, Rotation of a spheroid in a Couette flow AT moderate Reynolds numbers, Phys. Rev. E, 76, 026310–026321, 2007.
  • 5. G.K. Youngren, A. Acrivos, Stokes flow past a particle of arbitrary shape: a numerical method of solution, J. Fluid Mech., 69, 577–403, 1975.
  • 6. S.Weinbaum, P. Ganatos, Z. Yan, Numerical multipole and boundary integral equation techniques in Stokes flow, Ann. Rev. Fluid Mech. 22, 275–316, 1990.
  • 7. C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, Cambridge University Press, Cambridge 1992.
  • 8. M. Kohr, Boundary integral method for Stokes flow past a solid sphere and a viscous drop, Comput. Methods Appl. Mech. Engng., 190, 5529–5542, 2001.
  • 9. H.A. Lorentz, A general theorem concerning the motion of a viscous fluid and a few consequences derived from it, Versl. Kon. Acad. Wet. Amst. 5, 168–175, 1897.
  • 10. C.W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Leipzig, Akad. Verlagsgesellschaft M.B.H., 1927.
  • 11. J.M. Burgers, On the motion of small particles of elongated form suspended in a viscous liquid: Chap. III of Second Report on Viscosity and Plasticity, Kon. Ned. Akad. Wet. Verhand, 16, 113–184, 1938.
  • 12. Z. Yan, Y. Zhao, W. Liu, The Stokes flow induced by the rotation of a prolate axisymmetric body in the presence of an infinite planar boundary, [in:] H. Niki, M. Kawahara [Eds.], Computational Methods in Flow Analysis, 1, Okayama University of Science, Okayama, Japan, 243–248, 1988.
  • 13. J.R. Blake, A.T. Chwang, Fundamental singularities of viscous flow. Part I. The image system in the vicinity of stationary no-slip boundary, J. Engng Math., 8, 23-29, 1974.
  • 14. P. Ganatos, S. Weinbaum, R. Pfeffer, Strong interaction theory for the creeping motion of a sphere between plan boundaries. Part 1. Perpendicular motion, J. Fluid Mech. 99, 739-753, 1980.
  • 15. W. Wangi, A new approach of treating the Stokes flow of nonslender prolate arbitraży axi-symmetrical body, Sci. Sin. Ser. A, 27, 731–744, 1984.
  • 16. H.J. Keh, C.H. Tseng, Slow motion of an arbitrary axisymmetric body along its axis of revolution and normal to a plane surface, Int. J. Multiphase Flow, 20, 185–210, 1994.
  • 17. H.J. Keh, C.H. Huang, Slow motion of axi-symmetric slip particles along their axes of revolution, Int. J. Engng. Sci., 42, 1621–1644, 2004.
  • 18. M. Kohr, I. Pop, Viscous Incompressible Flow for Low Reynolds Numbers, WIT Press, Boston 2004.
  • 19. J.-J. Feng, W.-Y. Wu, Electrophoretic motion of an arbitary prolate body of resolution toward an infinite conducting wall, J. Fluid Mech. 264, 41–58, 1994.
  • 20. Y.W. Wan, H.J. Keh, Slow rotation of an axisymmetric slip particle about its axis of revolution, CMES, 53, 73–93, 2009.
  • 21. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Noordhoff International Publishing, Leyden, Netherlands, 1973.
  • 22. E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York 1938.
  • 23. D.K. Hutchins, M.H. Harper, R.L. Felder, Slip correction measurements for solid spherical particles by modulated dynamic light scattering, Aerosol. Sci. Technol., 22, 202–218, 1995.
  • 24. P.A. Thompson, S.M. Troian, A general boundary condition for liquid flow at solid surfaces, Nature (London), 389, 360–362, 1997.
  • 25. E.B. Dussan, On the spreading of liquids on solid surfaces: static and dynamic contact lines, Ann. Rev. Fluid. Mech., 11, 371–400, 1979.
  • 26. J. Koplik, J.R. Banavar, J.F. Willemsen, Molecular dynamics of Poiseuille flow and moving contact lines, Phys. Rev. Lett., 60, 1282–1285, 1988.
  • 27. P.A. Thompson, M.O. Robbins, Simulations of contact line motion: slip and the dynamic contact angle, Phys. Rev. Lett., 63, 766–769, 1989.
  • 28. P.A. Thompson, W.B. Brinkerhoff, M.O. Robbins, Microscopic studies of static and dynamic contact angles, J. Adhesion Sci. Technol. 7, 535–554, 1993.
  • 29. H.K. Moffatt, Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18, 1–18, 1964.
  • 30. J. Koplik, J.R. Banavar, Corner flow in the sliding plate problem, Phys. Fluids 7, 3118–3125, 1995.
  • 31. J.R.A. Pearson, C.J.S. Petrie, Polymer Systems, Deformation and Flow, R.E. Wetton, R.W. Whorlow [Eds.], Macmillan, London, 163–187, 1968.
  • 32. S. Richardson, On the no-slip boundary condition, J. Fluid Mech., 59, 707–719, 1973.
  • 33. M.E. O’Neill, K.B. Ranger, H. Brenner, Slip at the surface of a translating-rotating sphere bisected by a free surface bounding a semi-infinite viscous fluid: removal of the contact-line singularity, Phys. Fluids, 29, 913–924, 1986.
  • 34. A.B. Basset, A Treatise on Hydrodynamics, 2, Dover, New York 1961.
  • 35. C.L.M.H. Navier, Memoirs de l’Academie, Royale des Sciences de l’Institut de France, 1, 414–416, 1823.
  • 36. H.J. Keh, J.H. Chang, Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity, Chem. Eng. Sci., 53, 2365–2377, 1998.
  • 37. J. Barrat, L. Bocquet, Large slip effect at a nonwetting fluid-solid interface, Phys. Rev. Lett., 82, 4671–4674, 1999.
  • 38. R. Pit, H. Hervet, L. Léger, Direct Experimental Evidence of Slip in Hexadecane, Solid Interfaces, Phys. Rev. Lett. 85, 980–983, 2000.
  • 39. C. Neto, D.R. Evans, E. Bonaccurso, H.J. Butt, V.S.J. Craig, Boundary slip In Newtonian liquids, a review of experimental studies, Rep. Progr. Phys., 68, 2859–2897, 2005.
  • 40. D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic micro channel walls, Phys. Fluids, 14, L9-L12, 2002.
  • 41. G. Willmott, Dynamics of a sphere with inhomogeneous slip boundary conditions In Stokes flow, Phys. Rev., E 77, 055302–055305, 2008.
  • 42. H. Sun, C. Liu, The slip boundary condition in the dynamics of solid particles immersed in Stokesian flows, Solid State Commun., 150, 990–1002, 2010.
  • 43. H. Zhang, Z. Zhang, Y. Zheng, H. Ye, Corrected second-order slip boundary conditio for fluid flows in nanochannels, Phys. Rev., E 81, 066303–066308, 2010.
  • 44. F. Yang, Slip boundary condition for viscous flow over solid surfaces, Chem. Eng. Comm., 197, 544–550, 2010.
  • 45. J.K. Whitmer, E. Luijten, Fluid-solid boundary conditions for multiparticle collision dynamics, J. Phys. Condens. Matter, 22, 104–106, 2010.
  • 46. H. Ramkissoon, Slip flow past an approximate spheroid, Acta Mech., 123, 227–233, 1997.
  • 47. H.H. Sherief, M.S. Faltas, E.I. Saad, Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid, Z. Angew. Math. Phys., 59, 293–312, 2008.
  • 48. Y.Y. Lok, I. Pop, D.B. Ingham, Oblique stagnation slip flow of a micropolar fluid, Meccanica, 45, 187–198, 2010.
  • 49. H.H. Sherief, M.S. Faltas, E.A. Ashmawy, Galerkin representations and fundamental solutions for an axisymmetric microstretch fluid flow, J. Fluid Mech., 619, 277–293, 2009.
  • 50. Y.C. Chang, H.J. Keh, Translation and rotation of slightly deformed colloidal spheres experiencing slip, J. Colloid Interface Sci., 330, 201–210, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0008-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.