PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bifurcation into shear bands on the Bishop and Hill polyhedron. Part 3, Case of the edges of dimension one

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper ends a series of three papers devoted to the micro-mechanical conditions which render possible the appearance of shear bands in crystalline materials. It presents the results on the edges of dimension 1 (encompassing the states of the deviatoric stress applied between two vertices of the Bishop and Mill polyhedron). They show that bifurcation is possible with a relatively small number of active slip systems, in conditions of strain hardening which are of the same order of magnitude as those at the vertices. An application is given to the case of the C {112} (111) oriented single crystal compressed in a channel die. The characteristic experimental feature: appearance of two successive sets of bands (111) [112] and (i 11) [112] is explained in terms of the most favoured bifurcation planes and the local rotation of the crystal. Though convincing to predict the onset of shear bands, the above calculations do not provide a description of their intergranular development, especially crossing of the grain boundaries, since at this stage the material has been too much affected by the intense shearing to be treated by a method of bifurcation.
Rocznik
Strony
387--404
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • SMS, R3M, UMR CNRS 5146, Ecole Nationale Supérieure des Mines de Saint-Etienne, 158 cours Fauriel, 42023 Saint-Etienne cedex 2, France
autor
  • DM, DAM, Commissariat à l’Energie Atomique, Le Ripault, 37260 Monts, France
Bibliografia
  • 1. M. Darrieulat, A. Chenaoui, Bifurcation into shear bands on the Bishop and Hill polyhedron, Part I: General analysis, Arch. Mech., 56, 2, 137–156, 2004.
  • 2. M. Darrieulat, D. Chapelle, Bifurcation into shear bands on the Bishop and Hill polyhedron. Part II: Case of the vertices, Arch. Mech., 56, 6, 453–472, 2004.
  • 3. U.F. Kocks, H. Chandra, Slip geometry in partially constrained deformation, Acta Metall., 30, 695–709, 1982.
  • 4. Z. Jasieński, T. Baudin, A. Piątkowski, R. Penelle, Orientation changes inside shear bands occurring in channel–die compressed (112)[¯1¯11] copper single crystals, Scripta Mater., 35, 3, 397–403, 1996.
  • 5. Y.S. Liu, L. Delannay, P. Van Houtte, Application of the Lamel model for simulating cold rolling texture in molybdenum sheet, Acta Mater., 50, 7, 1849–1856, 2002.
  • 6. G.R. Canova, U.F. Kocks, M.G. Stout, On the origin of shear bands in textured polycrystals, Scripta Metall., 18, 437–442, 1984.
  • 7. R. Becker, J.F. Butler, H. Hu, L.A. Lalli, Analysis of an aluminium single crystal with unstable initial orientation (001)[110] in channel die compression, Metall. Trans. A, 22A, 45–58, 1991.
  • 8. G.D. Köhlhoff, A.S. Malin, K. Lücke, M. Hatherly, Microstructure and texture of rolled {112}<111> copper single crystals, Acta Metall., 36, 10, 2841–2847, 1988.
  • 9. K. Morii, H. Mecking, Y. Nakayama, Development of shear bands in f.c.c. single crystals, Acta Metall., 33, 3, 379–386, 1983.
  • 10. P. Wagner, O. Engler, K. Lücke, Formation of Cu–type shear bands and their influence on deformation and texture of rolled f.c.c. (112)[11¯1] single crystals, Acta Metall. Mater., 43, 10, 3799–3812, 1995.
  • 11. H. Paul, M. Darrieulat, A. Piątkowski, Local orientation changes and shear banding in {112}<111> oriented aluminium single crystals, Z. Metallkd.,92, 1213–1221, 2001.
  • 12. A. Korbel, The model of microshear banding in metals, Scripta Metall. Mater., 24, 1229–1238, 1990.
  • 13. S. Yang, C. Rey, Shear band post-bifurcation in oriented copper single crystals, Acta Metal. Mater.,42, 8, 2763–2774, 1994.
  • 14. H. Petryk, K. Thermann, Post-critical deformation pattern in plane strain plastic flow with yield surface vertex effect, Int. J. of Mech. Sci., 42, 2133–2146, 2000.
  • 15. R. B. Pęcherski, Modelling of large plastic deformations based on the mechanism of micro-shear banding: Physical foundations and theoretical description in plane strain, Arch. Mech., 44, 5–6, 563–584, 1992.
  • 16. P. Dubois, M. Gaspérini, C. Rey, A. Zaoui, Crystallographic analysis of shear bands initiation and propagation in pure metals, Part II: Initiation and propagation of shear bands in pure ductile rolled polycrystals, Arch. Mech., 40, 1, 35–40, 1988.
  • 17. J.Y. Poussardin, Caractérisation et évolution des bandes de cisaillement dans les monocristaux d’Al-Mn (Characterisation and evolution of the shear bands in Al-Mn single crystals), PhD thesis, Ecole des Mines de Saint-Etienne (France) 2003.
  • 18. Z.S. Basiński, S.J. Basiński, Plastic deformation and work hardening, [in:] Nabarro FRN, Dislocations in Solids, North Holland Publishing Company, 4, 1979.
  • 19. A. Korbel, Perspectives of the control of the mechanical performance of metals during forming operations, J. Mater. Process. Tech., 34, 41–47, 1992.
  • 20. A. Pawełek, A. Korbel, Soliton-like behaviour of moving dislocation group. Phil. Mag. B, 61, 829–837, 1990.
  • 21. M. Darrieulat, A. Chenaoui, Analyse mécanique du franchissement des joints de grains par les bandes de cisaillement (Mechanical analysis of the crossing of grain boundaries by shear bands), [in :] Damil N. 6`eme congrès de mécanique, Tanger, Maroc, 1, 82–83, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0006-0087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.