PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On the foundations of ordinary and generalized rigid body dynamics and the principle of objectivity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the foundations of Newton-Euler rigid body dynamics and its generalized forms in the light of the objectivity principle. We prove that most of the features of dynamics may be directly deduced from this principle and from properties of the group defining the geometry. In particular, these deductions seem to close the conjectures about the relevance of the objectivity principle to dynamics.
Rocznik
Strony
313--353
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Ecole nationale des ponts et chaussees Institut Navier, 6-8 avenue Blaise Pascal, Cite Descartes, 77455 Marne-la-Vallee, France, chevallier@lami.enpc.fr
Bibliografia
  • 1. V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications ŕ l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 1, 319–361, Grenoble 1966.
  • 2. A. A. Bourov and D. P. Chevallier On the variational principle of poincaré, the poincaré-Chetayev equations and the dynamics of affinely deformable bodies, Cahiers du CERMICS 14, 36–83, ENPC, Paris 1996.
  • 3. N. G. Chetayev, On the equations of motion of a similarly deformable body [in Russian], Scientific Notes of Kazan University, 114, 8, 5–8, 1954.
  • 4. D. P. Chevallier, Curvature and dynamics of an affinely deformable body, Third International Symposium on Classical and Celestial Mechanics, 23–28, 1998, Velikie Luki, Russie.
  • 5. D. P. Chevallier, Généralisation de l’espace-temps néoclassique de Noll et structure des théories mécaniques Newtoniennes Compte-rendus à l’Académie des Sciences 292, 503–506, Paris 1981.
  • 6. D. P. Chevallier, Géométrie des groupes de Lie et théorie newtonienne de l’inertie, C.R.A.S., 292, 503–506, Paris 1981.
  • 7. D. P. Chevallier, Lie algebras, modules, dual quaternions and algebraic methods in kinematics, Mech. Mach. Theory Vol., 26, 6, 613–627,1991.
  • 8. D. P. Chevallier, Groupes de Lie et mécanique des systèmes de corps rigides, Proceedings of the conference “Modelisation Mathématique”, Kassel 1984, 231–270, Mac Graw Hill 1986.
  • 9. D.P. Chevallier, Dynamique du point de vue eulerien et Lagrangien [in Russian], Recherches sur les problèmes de stabilité et de stabilisation du mouvement, c. Sc. De Russie, Centre de Calcul, Moscou Vol. II-2000.
  • 10. Y. N. Fedorov and V.V. Kozlov, Various aspects of n-Dimensional rigid body dynamics, American. Math. Soc. Transl., 68, 141–171, 1995.
  • 11. B. Golubowska, Motions of test rigid bodies in riemannian spaces, Rep. Math. Phys., 48, 95–102, 2001.
  • 12. B. Golubowska, Models of internal degrees of freedom based on classical groups and their homogeneous spaces, Rep. Math. Phys. 49, 193–201, 2002.
  • 13. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Pub., 1963.
  • 14. V. V. Kozlov, Symmetries, topology and resonnance in Hamiltonian mechanics, Springer-Verlag 1996.
  • 15. V. V. Kozlov and D. Zenkov, On Geometric poinsot interpretation for an n-dimensional rigid body [in Russian], Tr. Semin. Vectorn. Tenzorn. Anal., 23, 202–204, 1988..
  • 16. E. Kröner [Ed.], Mechanics of generalized continua, Proceedings of the IUTAM Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications. Freudenstadt and Stuttgart 1967, Springer-Verlag 1968.
  • 17. C-M. Marle, On mechanical systems with a Lie group as configuration space, Colloquium in memory of J. Leray, Karlskrona-Ronneby Sweden, August 30–September 3, 1999.
  • 18. J. E. Marsden and T. S. Ratiu, Introduction to mechanics and symmetry, Springer-Verlag 1994.
  • 19. A. Martens, Dynamics of holonomically constrainede Affinely-Rigid Body, Rep. Math. Phys., 49, 295–303, 2002.
  • 20. W. Noll, The foundations of classical mechanics in the light of recent advances in continuum mechanics, 266–281, of The Axiomatic Method with Special References to Geometry and Physics (Symposium at Berkeley, 1957), Amsterdam, North-Holland Publishing, 1959.
  • 21. W. Noll, La Mécanique Classique Basée sur un Axiome d’Objectivité, dans “La Méthode axiomatique dans les mécaniques Classiques et Nouvelles”, (Colloque International, Paris 1959), Gauthier-Villars, Paris 1963.
  • 22. H. Poincaré, La science et l’hypothčse, Flamarion, Paris 1902.
  • 23. H. Poincaré, La valeur de la science, Flamarion, Paris 1905.
  • 24. T. Ratiu, The motion of the free n-dimensional rigid body, Indiana University Mathematics Journal, 29, 4, 1980.
  • 25. T. Ratiu, Euler-poisson equations on lie algebras and the N-dimentionnal heavy rigid body, American Journal of Mathematics, 104, 2, 409–448, 1982.
  • 26. J. C. Simo and L. Vu-Quoc, A finite-strain beam formulation, the three-dimensional dynamic problem, Part I, and a three-dimensional finite-strain rod model, Part II. Computer methods in applied mechanics and engineering, 49, 55–70, 1985 (Part I), 58, 79–116, 1986, (Part II).
  • 27. J. J. Slavianowski, The mechanics of the homogeneously deformable body. Dynamical models with high symmetries Z. angew. Math. und Mech., Bd. 62, H.6, 229–240, 1982.
  • 28. J. J. Slavianowski, Affinely rigid body and hamiltonian systems on GL(n,R), Reports on Mathematical Physics, 26, 1, 73–119, 1988.
  • 29. C. G. Speziale, A review of material frame-indifference in mechanics, Appl. Mech. Rev., 51, 8, August 1998.
  • 30. C. Vallée, A. Hamdouni, F. Isnard, D. Fortuné, The equations of motion of a rigid body without parametrization of rotations, J. Appl. Maths. Mechs., (PMM), 63, 1, 25–30, 1999.
  • 31. H. Weyl, Raum Zeit und Materie, Zurich 1918 (French translation, A. Blanchard Paris, 1923).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0004-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.