PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis and design optimization of rubber components for vibration isolation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A constitutive theory, finite element formulation and topology optimization for anti-vibration rubber are presented. Many vibration isolators made of rubbers are operating under small oscillatory load superimposed on large static deformation. A~viscoelastic constitutive equation for rubber is proposed considering the influence of large static pre-deformation on the dynamic properties. The proposed model is derived through linearization of Simo's viscoelastic constitutive model and introduction of static deformation correction factor. And then the model is implemented in a finite element code to analyze the behavior of rubber elements under general loading conditions. Dynamic tests are performed in order to verify the model under multi-axial deformation. The computed results by the FEA code are compared with the experimental results and the suggested constitutive equation with static deformation correction factor shows good agreement with the test values. For the stability and low transmissibility of isolation systems, both static and dynamic performance must be concurrently considered in the design process. The continuum-based design sensitivity analyses (DSA) of both the static hyperelastic model and dynamic viscoelastic model are developed. And then the topology optimization methodology is used in order to generate the system layouts considering both the static and dynamic performance.
Rocznik
Strony
449--479
Opis fizyczny
Bibliogr. 19 poz., fot., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Gusung-dong, Yusung-gu, Daejeon, 305-701 Korea
autor
  • Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Gusung-dong, Yusung-gu, Daejeon, 305-701 Korea
autor
  • R&D Division for Hyundai Motor Company & Kia Motor Corporation, Jangduk-dong, Whasung-si, Gyunggi-do, 445-706, Korea
Bibliografia
  • 1. J.1. SULIVAN, K. N. MORMAN and R. A. PETT, A non-linear viscoelastic characterization of a natural rubber gum vulcanizate, Rubber Chemistry and Technology, 53, 8)5- 822, 1980.
  • 2. K. N. MORMAN Jr and J. C. N AGTEGAAL, Finite element analysi.s of sinusoida smallamplitude vibrations in deformed viscoelastic solid.s. Part I: theoretical developmnt, International Journal For Numerical Methods in Engineering, 19, 1079- 1103, 1983.
  • 3. A. B. ZOUNEK, Theory and computation of the steady state harmonic response of viscoelastic rubber parts, Computer Methods in Applied Mechanics and Engineeri~, 105, 63- 92, 1993.
  • 4. A. B. ZOUNEK, Determination of material response functions for prestrained 'ubbers, Rheologica Acta, 31, 575- 591,1992.
  • 5. HIBBIT, KARLSSON and SORENSON INC., ABAQUS theory manual, Version 5.7. :997.
  • 6. A. VOET and J. C. MORAWSKI, Dynamic mechanical and electrical properties of vulcanizates at elongations up to sample rupture, Rubber Chemistry and Technology, 47, 765-777, 1974.
  • 7. P. MASON, The viscoelastic behavior of rubber in extension, Journal of Applied Polymer Science, 1, 1, 63- 69, 1959.
  • 8. O. KRAMER, S. HVIDT and J. D. FERRY, Dynamic mechanical properties, [in:j J. E . MARK et al. [Ed.] Science and Technology of Rubber, Academic Press, San Diego 1994.
  • 9. B. K. KIM and S. K . YOUN, A viscoelastic constitutive model of rubber under small oscillatory loads superimposed on large static deformation, Archive of Applied Mechanics, 71, 11, 748- 763, 2001.
  • 10. Y. Yu , N. G. NAGANATHAN and R. V. DUKKIPATI, A literature review of Automotive vehicle engine mounting systems, Mechanism and Machine Theory, 36, 123- 142, 2001.
  • 11. K. K. CHOI and W . DUAN, Design sensitivity analysis and shape optimization of structural components with hyperelastic material, Computer Methods in Applied Mechanics and Engineering, 187, 219- 243, 2000.
  • 12. J. J. KIM and H. Y. KIM, Shape design of an engine mount by a method of parameter optimization, Computers and Structures, 65, 5, 725- 731, 1997.
  • 13. S. H . KI and S. M. WANG, Topology optimization of hyperelastic material, Proceedings of 4th world congress of structural and multidisciplinary optimization, June 4-8 2001, Dalian, China.
  • 14. J. C. SIMO, A fully three-dimensional finite-strain viscoelastic damage model: for'mulation and computational aspects, Computer Methods in Applied Mechanics and Engineering, 60, 153- 173, 1987.
  • 15. R. M. CHRISTENSEN, Theory of viscoelasticity, Academic Press, New York 1982.
  • 16. C. TRUESDELL and W . NOLL, The nonlinear field theor'ies of mechanics, [in:] Encyclopedia of Physics, S. FLUGGE [Ed.]' Springer-Verlag, New York 1965.
  • 17. G D. J UNG, S. K. YOUN and B. K. KIM, A three-dimensional nonlinear viscoelastic constitutive model of solid propellant, International Journal of Solids and Structures, 37, 4715- 4732, 2000.
  • 18. T. SUSSMAN and K. J. BATHE, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Computers & Structures, 26, 1/ 2, 357- 409, 1987.
  • 19. R. P. BROWN, Physical testing of rubber, Chapman & Hall, London, 3rd [Ed.]' 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0002-0109
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.