PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-local coupling of viscoplasticity and anisotropic viscodamage for impact problems using the gradient theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A general framework for the analysis of heterogeneous media that assesses a strong coupling between viscoplasticity and anisotropic viscodamage evolution is formulated for-impact related problems within the framework of thermodynamic laws and nonlinear continuum mechanics. The proposed formulations include thermo-elasto-viscoplastici- ty with anisotropic thermo-elasto-viscodamage, a dynamic yield criterion of a von Mises type and a dynamic viscodamage criterion, the associated flow rules, non-linear strain hardening, strain-rate hardening, and temperature softening. The constitutive equations for the damaged material are written according to the principle of strain energy equivalence between the virgin material and the damaged material. That is, the damaged material is modeled using the constitutive laws of the effective undamaged material in which the nominal stresses are replaced by the effective stresses. The evolution laws are impeded in a finite deformation framework based on the multiplicative decomposition of the deformation gradient into elastic, viscoplastic, and viscodamage parts. Since the material macroscopic thermomechanical response under high-impact loading is governed by different physical mechanisms on the macroscale level, the proposed three-dimensional kinematical model is introduced with manifold structure accounting for discontinuous fields of dislocation interactions (plastic hardening), and crack and void interactions (damage hardening). The non-local theory of viscoplasticity and viscodamage that incorporates macroscale interstate variables and their higher-order gradients is used here to describe the change in the internal structure and in order to investigate the size effect of statistical inhomogeneity of the evolution-related viscoplasticity and viscodamage hardening variables. The gradients are introduced here in the hardening internal state variables and are considered to be independent of their local counterparts. It also incorporates the thermomechanical coupling effects as well as the internal dissipative effects through the rate-type covariance constitutive structure with a finite set of internal state variables. The model presented in this paper can be considered as a framework, which enables one to derive various non-local and gradient viscoplasticity and viscodamage theories by introducing simplifying assumptions.
Rocznik
Strony
39--89
Opis fizyczny
Bibliogr. 111 poz., rys.
Twórcy
  • Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
  • Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
  • Department of Aerospace Engineering, Air Force Institute of Technology, WPAFB, OH 45433-7765, USA
Bibliografia
  • 1. ABU AL-RuB R.K., and VOYIADJIS G.Z ., On the coupling of anisotropic damage and plasticity models for ductile materials, Int. J . of Solids and Structures (accepted), 2002.
  • 2. AIFANTIS E.C., On the microstructural origin of certain inelastic models, J. of Eng. Materials and Tech., 106, 326- 330, 1984.
  • 3. AIFANTIS E .C ., On the role of gradients in the localization of deformation and fracture, International Journal of Engineering Science, 30, 1279-1299, 1992.
  • 4. AIFANTIS E.C., OKA F., YASHIMA A., and ADACHI T., Instability of gradient dependent elastoviscoplasticity for clay, International Jo'urnal for Numerical and Analytical Methods in Geomechanics, 23 (2.10), 973-994, 1999.
  • 5. ALBERTINI A. and MONTAGNANI M. , Wave propagation in dynamic loading, Nuclear Engineering and Design, 31, 115- 124, 1976.
  • 6. ARMSTRONG P .J ., and FREDERICK C . 0 ., A mathematical representation of the multiaxial bauschinger effect, CEGB Report RD/ B/ N/ 731, Berkeley Laboratories, R&D Department, CA., 1966.
  • 7. ASKES H. and SLUYS L.J ., Explicit and implicit gradient series in damage mechanics, European Journal of Mechanics A/ Solids, 21 , 379- 390, 2002.
  • 8. BAMMANN D.J. and AIFANTIS E .C. , On a proposal for a continuum with microstructure, Acta Mech., 45, 91-121 , 1982.
  • 9. BAMMANN D.J . and AIFANTIS E .C . (1987) A Model for finite-deformation plasticity, Acta Mech., 69, 97- 117.
  • 10. BAMMANN D .J ., MOSHER D. , HUGHES D.A. , MOODY N.R. , and DAwsoN P .R . (1999) Using spatial gradients to model localization phenomena, Sandia National Laboratories Report, SAND99- 8588, Albuquerque, New Mexico 87185 and Livermore, CA.
  • 11 . BASSANI J .L., Incompatibility and a simple gradient theory of plasticity, J. Mech. Phys. Solids, 49, 1983- 1996, 200l.
  • 12. BAZANT Z.P ., BELYTSCHKO T ., and CHANG T.P ., Continuum Theory for strain softening, ASCM Journal of Engineering Mechanics, 110, 1666-1691 , 1984.
  • 13. BAZANT Z. P . and OZBOLT J., N onlocal microplane model for fracture , damage, and size effect in structures, J . Engrg. Mech., ASCE, 116 (2 .11) , 2485- 2505, 1990.
  • 14. BAZANT Z.P. and PIJAUDIER-COBOT G ., Nonlocal continuum damage, localization instability and convergence, Journal of Applied Mechanics, 55, 287- 293, 1988.
  • 15. BELINGARDI G . and VADORI R. , Low velocity impacts tests of laminate glass-fiber-epoxy matrix composite material plates, International Journal of Impact Engineering, 21, 213-229, 2002.
  • 16. BELYTSCHKO T. , LIU W.K., and MORAN B ., Nonlinear finite element for continua and structures, John Wiley & Sons Ltd., England., 2002.
  • 17. BJERKE T ., ZHOUHUA L ., and LAMBROS J ., Role afplasticity in heat generation Turing high rate deformation and fracture of polycarbonate, Int. J . Plasticity, 18, 549-567, 2002.
  • 18. BORVIK T ., LANGSETH M., HOPPERSTAD O.S., and MALO K.A., Perforation of 12mm thick steel plates by 20mm diameter projectiles with fiat, hemispherical and conical noses Part I: Experimental study, International Journal of Impact Engineering, 21, I, 19-35, 2002.
  • 19. Busso E.P., MEISSONNIER F.T., and O'DOWD N.P., Gradient-dependent deformation of two-phase single crystals, J. Mech. Phys. Solids, 48, 2333-2361, 2002.
  • 20. CAR E., OLLER S ., and ONATE E ., A Large strain plasticity model for anisotropic materials-composite material application, International Journal of Plasticity, 11, 1437-1463, 200l.
  • 2l. CELENTANO D. J ., A Large strain thermoviscoplastic formulation for the solidification of S. G. Cast iron in a green sand mould, International Journal of Plasticitiy, 11, 1623-1658, 200l.
  • 22. CHABOCHE J .-L., Thermodynamically based viscoplastic constitutive equations: theory versus experiment, [In:] High Temperature Constitutive Modeling-Theory and Application, MD-Vol. 26/ AMD-Vol. 121, ASME, 207-226, 1991.
  • 23. COLEMAN B. and GURTIN M., Thermodynamics with internal state variables, The Journal of Chemical Physics, 41 (2 .2), 597-613, 1967.
  • 24. CORDEBOIS J. P. and SIDOROFF F., Anisotropic damage in elasticity and plasticity, Journal de Mecanique Theorique et Appliquee, Numero Special, 45-60, 1979.
  • 25. DE BORST R . and MDHLHAUS H.-B ., Gradient-dependent plasticity formulation and algorithmic aspects, Int. J. Numer. Methods Engrg., 35, 521-539, 1992.
  • 26. DE BORST R. and PAMIN J., Some novel developments in finite element procedures for gradient-dependent plasticity, International Journal for Numerical Methods in Engineering, 39, 2477-2505, 1996.
  • 27. DE BORST R . AND SLUYS L .J., Localization in a cosserate continuum under static and loading conditions, Computer Methods in Applied Mechanics and Engineering, 90, 805-827, 1991.
  • 28. DE BORST R., SLUYS L.J., MiiHLHAUS, H.-B., and PAMIN, J., Fundamental issues In finite element analysis of localization of deformation, Engineering Computations, 10, 99-121, 1993.
  • 29. DOGHRI I., Mechanics of deformable solids: linear and nonlinear, analytical and computational aspects, Springer, Germany, 2000.
  • 30. DORNOWSKI W . and PERZYNA P., Localization phenomena in thermo-viscoplastic flow processes under cyclic dynamic loadings, Computer Assisted Mechanics and Engineering Sciences, 1, 117-160, 2000.
  • 31. DOYLE T. and ERICKSEN J., Nonlinear elasticity, Advances in Applied Mechanics, 4, 1956.
  • 32. DUSZEK-PERZYNA M.K., and PERZYNA P., Analysis of anisotropy and plastic spin effects on localization phenomena, Archive of Applied Mechanics, 68, 352-374, 1998.
  • 33. ERINGEN A.C. and EDELEN D.G.B., On non-local elasticity, Int. J. Engrg. Sci., 10, 233-248, 1972.
  • 34. ESPINOSA H.D., Lu H-C., ZAVATTIERI P.D., and DWIVEDI S., A 3-D Finite deformation anisotropic visco-plasticity model for fiber composites, Journal of Composite Materials, 35 (2.5), 369-410, 2001.
  • 35. FLECK N.A. and HUTCHINSON J.W., Strain gradient plasticity, Adv. Appl. Mech., 33, 295-361, 1997.
  • 36. FLECK N.A. and HUTCHINSON J.W., A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49, 2245-2271, 2001.
  • 37. FREED A. D. and WALKER K. P., Steady state and transient zener parameters in viscoplasticity: drag strength versus yield strength, App. Mech. Rev., 43 (2.5), S328-S337, 1990.
  • 38. FREED A.D., CHABOCHE J .-L, and WALKER K.P., A viscoplastic theory with thermodynamic considerations, Acta Mechanica, 90, 155-174, 1991.
  • 39. FREED A .D. and WALKER K .P ., Viscoplasticity with creep and plasticity bounds, International Journal of Plasticity, 9, 213, 1993.
  • 40. GAO H., HUANG Y., and NIX W.D., Modeling plasticity at the micrometer scale, Naturwissenschaften 86, 507-515, 1999.
  • 41. GARCIA GARINO, C . and OLIVER J ., A numerical model for the analysis of elastoplastic large strain problems fundamentals and applications, Proceedings of COMPLAS II, 117, 1992.
  • 42. GEERS M.G .D ., PEERLINGS R .H.J ., BREKELMANS W.A.M ., and DE BORST R. , Phenomenological nonlocal approaches based on implicit gradient-enhanced damage, Acta Mechanica, 144, 1- 15, 2000.
  • 43. GLEMA A., LODYGOWSKI T ., AND PERZYNA P ., Interaction of deformation waves and localization phenomena in in elastic solids, Comput. Methods Appl. Mech. Engrg., 183, 123-140, 2000.
  • 44. GURTIN M.E., A Gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , J . Mech. Phys. Solids, 50, I, 5-32, 2002.
  • 45. HENRY W., and HASLACH JR., A Non-equilibrium thermodynamic geometric structure for thermoviscoplastic with maximum dissipation, International Journal of Plasticity, 18, 127-153, 2002.
  • 46. HEsEBEcK 0 ., On an isotropic damage mechanics model for ductile materials, International Journal of Damage Mechanics, 10, 325- 346, 2001.
  • 47. JOHNSON G .R .) and COOK H . W ., Fracture characteristics of three metals subjected to various strains, strain rates, t emperature and pressures, Engineering Fracture Mechanics, 21, 1, 31- 48, 1985.
  • 48. KACHANOV L.M. , On the creep fracture time (in Russian), Izv. Akad. Nauk USSR Otd. Tech., 8, 26-31, 1958.
  • 49. KACHANOV L.M., Introduction to continuum damage mechanics, Martinus Nijhoff Publishers, the Netherlands, 1986.
  • 50. KAPOOR R . and NEMAT-N ASSER S . Determination of temperature rise during high strain rate deformation, Mechanics of Materials, 27, 1- 12, 1998.
  • 51. KRAJCINOVIC D ., Constitutive equations for damaging materials, Journal of Applied Mechanics, 50, 355-360, 1983.
  • 52. KRAJCINOVIC D . and FONESKA G.U., The continuum damage theory of brittle materials, Journal of Applied Mechanics, 48, 809-824) 1981.
  • 53. KRONER E ., Elasticity theory of materials with long range cohesive forces , Int. J. of Solids and Structures, 3, 731- 742, 1967.
  • 54. KUHL E., RAMM E., and DE BORST R ., An anistropic gradient damage model for quasibrittle materials, Comput. Methods Appl. Mech. Engrg., 183, 87-103, 2000.
  • 55. LACY T ., McDoWELL D.L., and TALREJA R ., Gradient concepts for evolution of damage, Mechanics of Materials, 31, 831-860, 1999.
  • 56. LASRY D . and BELYTSCHKO T., Localization limiters in trasient problems, Int. J. of Solids and Structures, 24, 581- 597, 1988.
  • 57. LE MONDS J . and NEEDLEMAN A ., An analysis of shear band development incorporating heat conduction, Mechanics of Materials , 5 , 363, 1986.
  • 58. LEE H . PENG, K. , and WANG J., An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates, Eng. F'rac. Mech., 21 , 1031-1054, 1985.
  • 59. LEMAITRE J . and CHABOCHE J .-L., Mechanics of solid materials, Cambridge University Press, London 1990.
  • 60. LEMAITRE J ., A Short course in damage mechanics, Springer-Verlag, New York 1992.
  • 61. LI S. , Lru W.K., ROSAKIS A.J ., BELYSTCHKO T. , and HAO W., Mesh-free galerkin simulations of dynamic shear band propagation and failure mode transition, Int. J . of Solids and Structures, 39, 1213- 1240, 2002.
  • 62 . LUBARDA V.A. and KRAJCINOVIC D., Some fundemental issues in rate theory of damageelastocplasticity, Int. J . Plasticity, 11, 763- 797, 1995.
  • 63. LUBLINER J. , Plasticiy theory, Macmillan Publishing Company, New York 1990.
  • 64. Luo R .K ., GREEN E .R ., and MORRISON C .J ., An approach to evaluate the impact damage initiation and propagation in composite plates, Composites: Part B, 32, 513-520, 2001.
  • 65. MALVERN L .E., The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect, J. Appl. Mech., Trans. ASME, 1 , 203- 208, 1951.
  • 66. MALVERN L.E., Experimental and theoritical approaches to characterization of material behavior at high rates of deformation, in Mechanical Properties at High Rates of Strain, Conf. Ser. No. 70, Ed. J. Harding, Institute of Physics, London, 1- 20, 1984.
  • 67. MARSDEN J. and HUGHES T ., Mathematical foundations of elasticity, Prentice Hall, Dover, New York 1994.
  • 68. MONTAGNANI M., ALBERTINI C., MICUNOVIC M., Uniaxial viscoplastic experiments of predamaged A lSI 316H, In: Creep in structures, M. Zyczkowski, [Ed.], IUTAM Symposium Cracow/Poland, 401-408, Springer Verlag, 1990.
  • 69. MiiHLHAUS H.B. and AIFANTIS E.C., A Variational principle for gradient plasticity, Int. J. of Solid and Structures, 28, 845-857, 1991.
  • 70. MURAKAMI S . and OHNO, N., A Continuum theory of creep and creep damage, in Proc. 3rd IUTAM Symposium on Creep in Structures, 422-444, Springer, Berlin 1981.
  • 71. MURAKAMI S ., Mechanical modeling of material damage, Journal of Applied Mechanics, 55, 280-286, 1988.
  • 72. MURNAGAHAM F., Finite deformations of an elastic solid, Am. J. Math., 59, 235,1937.
  • 73. NARASIMHAN M.N.L., Principles of continuum mechanics, John Wiley & Sons, Inc., USA 1992.
  • 74. NEEDLEMAN A., Material rate dependent and mesh sensitivity in localization problems, Computer Methods in Applied Mechanics and Engineering, 61,68-85, 1988.
  • 75. NEMAT-NASSER S. , On Finite plastic flow of crystalline solids and geomaterials, J . Applied Mechanics, 50, 1114- 1126, 1983.
  • 76. NEMAT-N ASSER S ., Phenomenological theories of elastoplasticity and strain localization at high strain rates, Appl. Mech. Rev., 45, SI9- S45, 1992.
  • 77. PERZYNA P ., The constitutive equations for rate-sensitive materials, Quart. Appl. Math. , 20, 321- 332, 1963.
  • 78. PERZYNA, P ., Fundamental problems visco-plasticity, [In:] KUERTI, H. [Ed.]' Advances in Applied Mechaics, Academic Press, 9, 243-377, 1966.
  • 79. PERZYNA P ., Thermodynamic theory of viscoplastcity, Advances in Applied Mechanics, 11, 313- 354, 1971 .
  • 80. PERZYNA P., Internal state variable description of dynamic fracture of ductile solids, Int. J. Solids Structures, 22, 797-818, 1986.
  • 81. PERZYNA P. , Temperature and rate dependent theory of plasticity of crystalline solids, Rev. Phys. Applique, 23, 445-459, 1988.
  • 82. PERZYNA P ., Interactions of elastic-viscoplastic waves and localization phenomena In solids, [In :] WEGNER J .L ., NORWOOD F.R. [Eds.] Proc. ASME Book AMR, 131, 114-121, 1995.
  • 83. PERZYNA P . and KORBEL K. , Analysis of the influence of various effects on criteria for adiabatic shear band localization in single crystals, Acta Mechanica, 129, 31- 62, 1998.
  • 84. PEERLINGS R.H .J ., DE BORST R ., BREKELMANS W.A.M., and DE VREE, J.H .P. , Gradient enhanced damage for quasi-brittle materials, Int. J . Numer. Methods in Engrg., Wiley, 39, 3391- 3403, London 1996.
  • 85. PIJAUDIER-CABOT T .G .P . and BAzANT Z.P., Nonlocal damage theory, ASCE Journal of Engineering Mechanics, 113, 1512- 1533, 1987.
  • 86. SmoRoFF F ., Description of anisotropic damage application to elasticity, in IUTAM Colloqium on Physical Nonlinearities in Structural Analysis, 237-244, Springer-Verlag, Berlin 1981.
  • 87. SIERAKOWSKI R.L., Strain rate effects in composites, ASME Applied Mechanics Reviews, 50 (2.12) pt 1, 741-761 , 1997.
  • 88. SIMO J.C. and HONEIN T., Variational formulation, discrete conservation laws, and path domain independent integrals for elasto-viscoplasticity, Journal of Applied Mechanics, 1990.
  • 89. SIMO J . C . and HUGHES T . J. R ., Computational inelasticity, Interdisciplinary Applied Mathematics, Springer, New York 1998.
  • 90. SVEDBERG T . and RUNESSON K., An adaptive finite element algorithm for gradient theory of plasticity with coupling to damage, Int. J . of Solids and Structures, 31, 7481-7499, 2000.
  • 91. VENSON A .R . and VOYIADJIS G.Z. , Damage quantification in metal matrix composites, J. Engrg. Mech. 121, 291-298, 2001.
  • 92. VOYIADJIS G .Z. and ABU-LEBDEH Damage model for concrete using bounding surface concept, Journal of Engineering Mechanics, 119 (2 .9) , 1865- 1885, 1993.
  • 93. VOYIADJIS G.Z . and ABU AL-RuB R.K ., Thermodynamic formulations for non-local coupling of viscoplasticity and anisotropic vis codamage for dynamic localization problems using gradient th eory, International Journal of Plasticity (submitted for publication) 2003.
  • 94. VOYIADJIS G.Z ., D ELIKTAS A ., Multi-scale analysis of multiple damage mechanics coupled with inelastic behavior of composite materials, Mechanics Research Communications, 21 (2.3) , 295- 300 , 2000a.
  • 95 . VOYIADJIS G .Z., DELIKTAS B ., A Coupled anisotropic damage model for the inelastic response of composite materials, Comput. Methods Appl. Mech. Engrg. , 183, 159- 199, 2000b.
  • 96. VOYIADJIS G .Z., DELIKTAS B ., and AIFANTIS E.C., Multiscale analysis of multiple damage m echanics coupled with inelastic behavior of composite materials, Journal of Engineering Mechanics, 121 (2.7) , 636- 645 , 2001.
  • 97. VOYIADJIS G.Z . and DORGAN R .J., Gradient formulation in coupled damage-plasticity, Archives of Mechanics, 53, 4-5, 565- 597, 2001.
  • 98. VOYIADJIS G.Z. and KATTAN P.!., A plasticity-damage theory for large deformations of solids. Part I: Theoretical formulation, Int. J. Engng. Sci. , 3D, 1089- 1108, 1992a.
  • 99. VOYIADJIS G . Z. and KATTAN P .!., Finite strain plasticity and damage in constitutive modeling of metals with spin tensors, Appl. Mech. Rev., 45, S95-S109, 1992b.
  • 100. VOYIADJIS G.Z . and KATTAN P .!. , Advances in damage mechanics: metals and metals matrix composites , Elsvier, Oxford 1999.
  • 101. VOYIADJIS G .Z. and PARK T ., Anisotropic damage effect tensor for the symmetrization of the effective stress tensor, Journal of Applied Mechanics, 64, 106- 110, 1997.
  • 102. VOYIADJIS G .Z. and PARK T ., Kinematics of damage for finite strain plasticity, International Journal of Engineering Science, 0, 1- 28, 1999.
  • 103. VOYIADJIS G .Z. and THIAGARAJAN G. , Micro and macro anisotropic cyclic damageplasticity models for MMCS, Int. J . Engng. Sci ., 35 (2 .5), 467-484, 1997.
  • 104. VOYIADJIS G .Z. and VENSON A.R., Experimental damage investigation of a SiC-Ti aluminide metal matrix composite, Int. J. Damage Mech. 4, 338-361, 1995.
  • 105. VOYIADJIS G.Z., VENSON A .R., and ABU AL-RuB R .K., Damage quantification In metal matrix composites, E .E. Gdoutos [Ed.]' Recent Advances in Experimental Mechanics, 109- 120, Kluwer press 2002.
  • 106. WANG W.M., SLUYS L.J. and DE BORST R., Interaction between material length scale and imperfection size for localization phenomena in viscoplastic media, European Journal of Mechanics, A/Solids, 15 (2.3), 447-464, 1996.
  • 107. ZBIB H.M and AIFANTIS E.C., On the gradient-dependent theory of plasticity and shear banding, Acta Mechanica, 9, 209-225, 1992.
  • 108. ZENER C. and HOLLOMON J.H., Plastic flow and rupture of metals, Trans. ASM, 33, 163-215, 1944a.
  • 109. ZENER C. and HOLLOMON J. H ., Effect of strain rate on plastic flow of steel, Journal of Applied Physics, 15, 22, 1944b.
  • 110. ZHOU M., ROSAKIS A. J., and RAVICHANDRAN G., Dynamically propagating shear bands in impact-loaded prenotched plates-I. experimental investigations of temperature signatures and propagation speed, J. Mech. Phys. Solids, 44 (2.6), 981-1006, 1996.
  • 111. ZHOU W., ZHAO J., LIU Y . , and YANG Q., Simulation of localization failure with straingradient-enhanced damage Mechanics, Int. J. Numer. Anal. Meth. Geomech., 26, 793-813, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0002-0092
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.