PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dependence of instability strain upon damage in thermoviscoplastic materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the field equation for the number density of voids and the expression for the expansion of a spherical void in a perfectly plastic infinite body subjected to a uniform hydrostatic tensile stress, an expression for the rate of dilatation of voids is derived. Damage is defined as the volume density of voids. The flow stress of the material is assumed to decrease affinely with an increase in the damage. It is used to find the instability strain in a thermoviscoplastic body deformed in simple shear and simultaneously subjected to a uniform hydrostatic tensile stress. The instability strain is determined by two methods: (i) the Considere condition, i.e., when the shearing traction becomes maximum, and (ii) by studying the stability of a slightly perturbed homogeneous solution of equations governing thermomechanical deformations of a thermoviscoplastic body. Both techniques give essentially the same value of the instability strain. Assuming that failure occurs when the accumulated damage equals 0.3, the failure strain is computed. For a 4340 steel, values of the instability and the failure strains as a function of the nominal strain rate and the hydrostatic pressure are computed.
Rocznik
Strony
691--707
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Department of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
autor
  • Department of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Bibliografia
  • 1. L. Seaman, D.R. Curran and D.A. Shockey, Computational models for ductile and brittle fracture, J. Appl. Phys., 17, 4814 4826, 1976.
  • 2. B. Dodd and T.L. Bai, Ductile fracture and ductility, Academic Press, London 1987.
  • 3. Y.L. Bai and B. Dodd, Adiabatic shear localization, occurrence, theories, and applications, Pergamon Press, 1992.
  • 4. A.J. Rosakis and G. Ravichandran, Dynamic failure mechanics, International Journal of Solids and Structures, 37, 331-348, 2000.
  • 5. F.A. McClintock, A criterion for ductile fracture by growth of holes, J. Appl. Mech., 35, 363-371, 1968.
  • 6. J.R. Rice and D.M. Tracey, On the ductile enlargement of voids in triaxial stress field, J. Mech. Phys. Solids, 17, 210 217, 1969.
  • 7. A.L. Gurson, Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction, Ph.D. Thesis, Brown University, 1975.
  • 8. J.W. Hancock and A.C. Mackenzie, On the mechanisms of ductile failure in high strength steels subjected to multiaxial stress states, J. Mech. Phys. Solids, 24, 147 169, 1976.
  • 9. R.C. Batra and X.S. Jin, Analysis of dynamic shear bands in porous thermally softening viscoplastic materials, Archives of Mechanics, 41, 13-36, 1994.
  • 10. R.C. Batra and N.A. Jaber, Failure mode transition speeds in an impact loaded prenotched plate with four thermoviscoplastic relations, Int. J. Fracture, 110, 47 71, 2001.
  • 11. P. Perzyna, Constitutive modelling of dissipative solids for localization and fracture, [in:] Localization and Fracture Phenomena in Inelastic Solids, P. Perzyna |Ed.|, Springer, Wien, New York, 99 241, 1998.
  • 12. W. Dornowski and P. PERZYNA, Localized fracture phenomena in thcrmo-viscoplastic flow processes under cyclic dynamic loadings, Acta Mechanica, 155, 233-255, 2002.
  • 13. W. Dornowski and P. Perzyna, Constitutive modeling of inelastic solids for plastic flow processes under cyclic dynamic loadings, J. Eugr. Mater., 121, 210-220, 1999.
  • 14. J.A. Lemaitre, Course on damage mechanics, Springer-Verlag, Berlin, Heidelberg, 1996.
  • 15. B.D. Coleman and M.E. Gurtin, Thermodynamics with internal state variables, J. Chem. Phys., 47, 597 613, 1967.
  • 16. D.R. Curran, L. Seaman and D.A. Shockey, Dynamic failure of solids, Phys. Rep., 147, 253-388, 1987.
  • 17. Y.L. Bai, F.J. Ke and M.F. XlA, Formulation of statistical evolution of microcracks in solids, Acta Mechanica Sinica, 7, 59-66, 1991.
  • 18. Y.L. Bai, Z. Ling, L.M. Luo and F.J. Ke, Initial development of microdamage under impact loading, Journal of Applied Mechanics, 59. 622-627, 1992.
  • 19. Y.L. Bai, J. Bai, H.L. Li, F.J. Ke and M.F. Xia, Damage evolution localization and failure of solids subjected to impact loading, Int. J. Impact Eng., 24, 685-701, 2000.
  • 20. Y.L. Bai, M.F. Xia, F.J. Ke and H.L. Li, Statistical microdamage mechanics and damage field evolution, Theoretical and Applied Fracture Mechanics, 37, 1-10, 2001.
  • 21. Y.C. Li, D.H. Li, Z.G. Wei and Y.X. Sun, Research on the deformation, damage and fracture rules of circular tubes under inside-explosive loading, Acta Mechanica Sinica, 31, 442 449, 1999.
  • 22. H. Tresca, On further aplications of the flow of solids, Proc. Inst. Mech. Engrs., 30, 301-345, 1878.
  • 23. C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15, 22-32, 1944.
  • 24. A. Marchand and J. Duffy, An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mechs. Phys. Solids, 36, 251-283, 1988.
  • 25. R.C. Batra, Numerical solutions of mitial-boundary-value problems with shear strain localization, [in:] Localization and Fracture Phenomena in Inelastic Solids, P. PERZYNA [Ed.|, Springer, Wien, New York, 301 389, 1998.
  • 26. M. Considers, Die Anwendung von Eisen und Stahl bei Konstruktionen, Gerold-Verlag, Wien 1888.
  • 27. Y.L. Bai, Thermo-plastic instability in simple shear, J. Mech. Phys. Solids, 30, 195-207, 1982.
  • 28. R.C. Batra and L. Chen, Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material, International Journal of Plasticity, 17, 1465-1489, 2001.
  • 29. G.R. Johnson and W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engng. Fract. Mech., 21, 31 48, 1985.
  • 30. G.R. Johnson and W.H. Cook, A constitutive model and data for metals subjected to large strain rates and high temperatures, Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands, 541 548, 1983.
  • 31. B. Dodd and A.G. Atkins, Flow localization in shear deformation of solids containing voids and of void-free solids, Acta Metallurgica, 31, 9-15, 1983.
  • 32. R.C. Batra and C.H. Kim, Analysts of shear bands in twelve materials, Int. J. Plasticity, 8, 425-452, 1992.
  • 33. L. Seaman, T.W. Barbee, J R. and D.R. Curran, Dynamic fracture criteria of homogeneous materials, AFWAL-TR-71-156, Stanford Research Institute.
  • 34. R.C. Batra, N.A. Jaber and M.E. Malsbury, Analysis of failure modes in an impact loaded thermoviscoplastic prenotched plate, Int. J. Plasticity, 19, 139-196, 2003.
  • 35. R.C. Batra and C.H. Kim, Effect of thermal conductivity on the initiation, growth and band width of adiabatic shear bands, Int. J. Engng. Sci., 29, 949 960, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0002-0087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.