Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A numerical integration algorithm for thermo-elasto-viscoplastic constitutive equations is presented. This algorithm satisfies the principle of material objectivity with respect to the total motion (translation, rotation and strain) of a material element. For this purpose, the properties of convective description are used. The explicit-implicit integration scheme for the plastic flow rule plays the crucial role in the proposed algorithm. The method of determining the stress state for inelastic deformations is based on the iterative solution of the dynamic yield condition with respect to the norm of the viscoplastic deformation rate tensor. The constitutive model being the subject of numerical analyses is described. Results of numerical calculations, which show an excellent performance of the proposed procedure, are presented.
Czasopismo
Rocznik
Tom
Strony
389--410
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Świętokrzyska 21, 00-049 Warsaw, Poland, wdorn@ippt.gov.pl
Bibliografia
- 1. T. Belytschko and M. Tabbara, Dynamic fracture using element-free Galerkin methods, International Journal for Numerical Methods in Engineering, 39, 923-938, 1996.
- 2. Y. F. Dafauas, Corotational rates for kinematic, hardening at large plastic deformations, J. Appl Mech., 50, 561-565, 1983.
- 3. W. Dornowski, A constitutive model for a cyclically loaded material with microdamages, Bull. MUT, 2, 95-117, 1998.
- 4. W. Dornowski, Influence of finite deformations on the growth mechanism of microvoids contained in structural metals, Arch. Mech., 51, 71-86, 1999.
- 5. W. Dornowski, Numerical simulations of plastic flow processes under cyclic dynamic, loadings, MUT 2598/99, Warsaw 1999.
- 6. W. Dornowski and P. Perzyna, Constitutive modeling of inelastic solvds for plastic flow process under cyclic dynamic loadings, Journal of Engineering Materials and Technology, ASME, 121, 210-220, 1999.
- 7. W. Dornowski and P. Perzyna, Localization phenomena in thermo-viscoplastic flow processes under cyclic dynamic, loadings, Computer Assisted Mechanics and Engineering Sciences, 7, 117-160, 2000.
- 8. W. Dornowski and P. Perzyna, Numerical simulations of thermo-viscoplastic flow processes under cyclic dynamic loadings, In: Proc. Euromech Colloquium 383, Inelastic Analysis of Structures under Variable Loads: Theory and Engineering Applications D. Weichert and G. Maier [Eds.], Kluwer Academic Publishers, 69 94, 2000.
- 9. W. Dornowski and P. Perzyna, Localized fracture phenomena in thermo-viscoplastic flow processes under cyclic dynamic loadings, Acta Mechanica, 30, 1 231, 2001.
- 10. M. Duszek and P. Perzyna, Plasticity of damage solids and shear band localization, Ingenieur-Archiv., 58, 380-392, 1988.
- 11. M. K. Duszek and P. Perzyna, The localization of plastic deformatiom in thermoplastic solids, Int. J. Solids Structures, 27, 11, 1419-1443, 1991.
- 12. M. K. Duszek-Perzyna and P. Perzyna, Adiabatic shear band localization in elastic- plastic single crystals, Int. J. Solids Structures, 30, 61-89, 1993.
- 13. A. E. Green and W. Zerna, Theoretical elasticity, Second Edition, Clarendon Press, Oxford 1960.
- 14. R. Hill, Aspects of invariance in Solid Mechanics, Advances in Applied Mechanics, 18, 1-75, 1978.
- 15. T. J. R. Hughes and J. Winget, Finite rotation effects m numerical integration of rate constitutive equations arising in large-deformation analysis, International Journal for Numerical Methods in Engineering, 15, 9, 1413-1418, 1980.
- 16. M. Kleiber and C. Woźniak, Nonlinear mechanics of structures, PWN, Warsaw, Kluwer Academic Publishers, Dordrecht/Boston/London, 1991.
- 17. R. D. Krieg and S. W. Key, Implementation of a time dependent plasticity theory into structural computer programs, Constitutive Equations in Viscoplasticity, Computational and Engineering Aspects, J.A. Stricklin and K.J. Saczlski [Eds.), AMD-20, ASME, New York 1976.
- 18. R. D. Krieg and D. B. Krieg, Accuracies of numerical solution methods for the elastic- perfectly plastic model, Journal of Pressure Vessel Technology, ASME, 99, 1977.
- 19. T. Ćodygowski and P. Perzyna, Localized fracture in inelastic poly crystalline solids under dynamic loading processes, Int. J. Damage Mechanics, 6, 364-407, 1997.
- 20. J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice- Hall, Englewood Cliffs, NY 1983.
- 21. A. Needleman and V. Tvergaard, Finite element analysis of localization plasticity, |in:| Finite Elements, Vol V: Special problems in solid mechanics, J. T. Oden and G. F. Carey [Eds.], Prentice-Hall, Englewood Cliffs, New Jersey 1984.
- 22. M. Ortiz and J. C. Simo, An analysis of a new class of integration algorithms for elasto- plastic constitutive relations, International Journal for Numerical Methods in Engineering, 23, 353 366, 1986.
- 23. P. Perzyna, The constitutive equations for rate sensitive plastic materials, Q. Appl. Math., 20, 321-332, 1963.
- 24. P. Perzyna, Theory of viscoplasticity, PWN, Warsaw 1966.
- 25. P. Perzyna, Thermodynamics of inelastic materials, PWN, Warsaw 1978.
- 26. P. Pinsky, M. Ortiz and K. S. Pister, Numerical integration of rate constitutive equations m finite deformation analysis, Computer Methods in Applied Mechanics and Engineering, 40, 137-158, 1983.
- 27. J. R. Rice and D. M. Tracey, Computational fracture mechanics, In Proceedings of the Symposium on Numerical Methods in Structural Mechanics, S. J. Fenves |Ed.|, Academic Press, Urbana Illinois 1973.
- 28. R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, Interscience Publishers, 2nd edition, New York 1967.
- 29. R. Rubinstein and S. N. Atluri, Objectivity of incremental constitutive relations over finite time step in computational finite deformation analyses, Computer Methods in Applied Mechanics and Engineering, 36, 1983.
- 30. D. Sidey and L. F. Coffin, Low-cycle fatigue damage mechanisms at high temperature, Fatigue Mechanisms, Proceedings of an ASTM-NBS-NSF symposium, Kansas City, Mo., May 1978, J. T. Fong (Ed.), ASTM STP 675. American Society for Testing and Materials, 528 568, 1979.
- 31. J. C. Simo and M. Ortiz, A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations, Computer Methods in Applied Mechanics and Engineering, 49, 221-245, 1985.
- 32. J. C. Simo, Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Computer Methods in Applied Mechanics and Engineering, 99, 61-112, 1992.
- 33. M. L. Wilkins, Calculation of elastic-plastic flow, In Methods of Computational Physics 3, Editors B. Alder et. al., Academic Press, New York 1964.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0002-0072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.