Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Integrity conditions for elastic-plastic, isotropically damaged solids with isotropic and kinematic strain hardening as subjected to cyclic loading, are in question. It is assumed that the damage process is coupled with the process of plastic deformation. The shakedown conditions are assumed to be satisfied. A new sufficient condition for shakedown accounting for a mixed isotropic and kinematic hardening is developed. The problem of evaluating limit yield-condition arguments is reduced to a min-max problem. In the case of plain strain, the problem is equivalent to a hyperbolic equation in partial derivatives of the second order. A method for computing the purely elastic damaged response of the solid to the prescribed loading program is proposed. The limit yield condition with specified arguments makes it possible to obtain upper and lower estimates for the local actual limit values of the damage parameter admitted by the yield condition for the given loading program. The estimates lead to necessary and sufficient conditions of integrity. The proposed method is illustrated by an example.
Czasopismo
Rocznik
Tom
Strony
267--286
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Graduate School of Applied Science, The Hebrew University of Jerusalem, Givat Ram Campus 91904 Jerusalem, Israel
autor
- Graduate School of Applied Science, The Hebrew University of Jerusalem, Givat Ram Campus 91904 Jerusalem, Israel
Bibliografia
- 1. S, PYCKO, and Z MRÓZ, Alternative approach to shakedown as a solution of a min-max problem. Acta Mech., 93, 205-222, 1992.
- 2. S, DOROSZ, Influence of cyclic creep on the upper bound to shakedown inelastic deflections, [in:] Z. MRÓZ, D. WEICHERT, S. DOROSZ [Eds.], “Inelastic behavior of structures under variable loads”, pp. 94-129, Kluwer Dordrecht, Netherlands, 1995.
- 3. C. POLIZZOTTO, G BORINO and P. FliSCHI, An approach to elastic shakedown based on the maximum plastic dissipation theorem, Arch. Mech., 52, 2000.
- 4. J. M. KLEBANOV and J T. BOYLE, Shakedown of creeping structures, Int. J. Sol. Struct., 35, 3121-3133, 1998.
- 5. A. HACHEMI and D. WEICHERT, An extension of the shakedown theorem to a certain class of inelastic materials with damage, Arch. Mech., 44, 491-498, 1992.
- 6. A. HACHEMI and D. WEICHERT, Application of shakedown theory to damaging inelastic materials under mechanical and thermal loads, Int. J. Mech. Sci., 39, 1067-1076, 1997.
- 7. A. SIEMASZKO Inadoptation analysis with hardening and damage, Eur. J. Mech., A/Solids, 12, 237-248, 1993.
- 8. C. POLJZZOTTO, G. BORINO, and P FUSCHI, An extended shakedown theory for elastic-plastic-damage material models. Eur.J.Mech., A/Solids, 15, 4-5, 357-371, 1996,
- 9. B. DRUYANOV and I. ROMAN, On adaptation (shakedown) of a class of damaged elastic plastic bodies to cyclic loading, Eur. J. Mech., A/ Solids, 17, 71-78, 1998.
- 10. X,Q. FENG and S.W. YU, Damage and shakedown analysis of structures with strainhardening, Int. J. Piast., 11, 237-249, 1995.
- 11. X.Q. FENG and S.W. YU, An upper bound on damage factor of structures at shakedown, Int J. Damage Mech., 3, 277-289, 1994.
- 12. A. HACHEMI and D. WEICHERT, Numerical shakedown analysis of damaged structures, Comput. Methods Appl. Mech. Engng., 160, 57-70, 1998.
- 13. D. WEIGHERT AND A. HACHEMI. Influence of geometrical nonlinearities on the shakedown of damaged structures, Int, J. Piast., 14, 891-907, 1998.
- 14. J LEMAITRE, A Course on damage mechanics, Springer, Berlin 1992.
- 15. B, HALPHEN and Q.S. NGUYEN, Sur les materiaux standards generalizes, J. Mec., 14, 39-63, 1975.
- 16. B. DRUYANOV and I. ROMAN, Conditions for shakedown of damaged elastic plastic bodies, Eur. J. Mech., A/ Solids, 18, 641-651, 1999.
- 17. E. MELAN. Zur Plastintal des raumlichen Kontinuums, Ing.-Arch., 8, 116-126, 1938.
- 18. G. MAIER AND G. NOVATI, A shakedown and bounding theory allowing for nonlinear hardening and second-order geometric effects, [in:] Inelastic Solids and Structures M. KLEIBER and J.A. KONIG [Eds.], 451-472, Pineridge Press, Swansee 1990.
- 19. J.A. KONIG, Shakdown of Elastic - Plastic Structures, Elsevier, Amsterdam 1987.
- 20. E. STEIN, G. ZHANG and Y. HUANG, Modeling and computation of shakedown problems for nonlinear hardening materials, Computer Methods in Mech. and Engng., 103, 247-272, 1993.
- 21. C. POLIZZOTTO, G. BORING, S. CADDEMI and P. FUSCHI, Shakedown problems with internal variables. Eur. J. Mech., A/Solids, 10, 6, 621-639, 1991
- 22. Q.S. NGUYEN and D.Cu. PHAM, On shakedown theorems in hardening plasticity, C.R. Acad. Sci. Paris, Ser. Iib (Mec. des solides), 329, 307-314, 2001.
- 23. J.-W. JU On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects, Int. J. Solids Struct., 25, 7, 803-833, 1989.
- 24. B. DRUYANOV and I. ROMAN, Extension of the static shakedown theorems to damaged solids (to appear in Mech. Res. Comm., 29, 2002).
- 25. B. DRUYANOV and I. ROMAN, Features of the stress path at the stage of adaptation and related shakedown conditions, Int. J. Sol. Struct. 34, 3773-3780, 1997.
- 26. S. TIMOSHENKO and J. GOODIER, Theory of elasticity. McGraw-Hill, New York 1951.
- 27. G. MAIER, Shakedown theory in elastoplasticity with associated and nonassociated flow laws; A finite element, linear programming approach, Meccanica 4, 1-11, 1969,
- 28. B. NAYROLES and D. WEICHERT, La notion de sanctuary d’elasticite et d’adaptation des structures. C.R. Acad. Sci. Paris, Serie II (Mec. des solides), 31, 1493-1498, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0002-0066