PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence and Green's functions for orthotropic micropolar continua

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article reports on a methodology to synthesize the response of orthotropic micropolar half-space subjected to concentrated and distributed loads. The disturbance due to normal and tangential loads are investigated by employing the eigenvalue approach. The integral transforms have been inverted by using a numerical technique to obtain the normal displacement, normal force stress and tangential couple stress in the physical domain. The results concerning these quantities are given and illustrated graphically.
Rocznik
Strony
185--198
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
autor
autor
  • Mathematics Department, Kurukshetra University, Kurukshetra 136 119, Haryana, India
Bibliografia
  • 1. A.C. ERINGEN, Linear theory of micropolar elasticity, J. Math. Mech., 15, 909-924, 1966.
  • 2. A.C. ERINGEN, Theory of micropolar elasticity in fracture, Vol II, (Academic Press), 621-729, 1968.
  • 3. D. IESAN, The plane micropolar strain of orthotropic elastic solids, Archives of Mechanics, 25, 547-561, 1973.
  • 4. D. IESAN, Torsion of anisotropic elastic cylinders, ZAMM , 54, 773-779, 1974.
  • 5. D. IESAN, Bending of orthotropic micropolar elastic beams by terminal couples, An, St. Uni. Iasi., XX, 411-418, 1974.
  • 6. R.D. GAUTHIER, In experimental investigations on micropolar media, Mechanics of Micropolar Media, O. BRULIN and R.K.T. HSIEH [Ed.|, World Scientific, Singapore, 1982.
  • 7. G. HONIG and U HIRDES, A method for the numerical inversion of the Laplace transform, J. Corap. Appl. Math., 10, 113-132, 1984.
  • 8. S. NAKAMURA, R. BENEDICT and R. LAKES, Finite element method for orthotropic micropolar elasticity, Int. J. Engng. Sci., 22, 319-330, 1984.
  • 9. W.H. PRESS, S.A. TEUKOLSKY, W.T. VELLERLIG and B.P FLANNERY, Numerical recipes in FORTRAN, (2nd edition) Cambridge University Press, Cambridge, 1986.
  • 10. R.K. MAHALABANABIS and J. MANNA, Eigenvalue approach to linear micropolar elasticity, Indian J. Pure Appl. Math,, 20, 1237-1250, 1989.
  • 11. Z.Q. CHENG and L.H. HE, Micropolar elastic field due to a spherical inclusion, Int. J. Engng. Sci., 33, 389-397, 1995.
  • 12. Z.Q. CHENG and L.H. HE, Micropolar elastic field due to a circular inclusion, Int. J. Engng. Sci., 35, 659-668, 1997.
  • 13. R. K. MAHALABANABIS and J. MANNA, Eigenvalue approach to the problem of linear micropolar thennoelasticity, Indian Acad. Math. Sci., 19, 69-86, 1997.
  • 14. H.A. ERBAY, An asymptotic theory of thin micropolar plates, Int. J. Engng. Sci., 38, 1497-1516, 2000.
  • 15. R. KUMAR and S. DESWAL, Steady-state response of a micropolar generalized thermoelastic half-space to the moving mechanical/thermal loads, Proc. Indian Acad. (Math. Sci), 119, 449-465, 2000.
  • 16. R. KUMAR and S. DESWAL, Mechanical and thermal source in a micropolar generalized thermoelastic medium, Journal of Sound and Vibrations, 239 467-488, 2001.
  • 17. R. KUMAR, R. SING and T.K. CHADHA, Eigenvalue approach to micropolar medium due to impulsive force at the origin, Indian J. Pure Appl. Math., 32, 1127-1144, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0002-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.