PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A uniform strain, discrete-grain model for evolving anisotropy of polycrystalline ice

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A discrete-grain model accounting for the induced anisotropy of polycrystalline ice is formulated. An individual ice crystal is supposed to be a transversely isotropic medium whose behaviour is linearly viscous. For such a crystal a frame-indifferent constitutive law involving three microscopic rheological parameters is derived. Assuming that each crystal undergoes a homogeneous deformation of the polycrystalline aggregate (the Taylor approximation), the macroscopic viscous behaviour of the material is determined. The considerations are illustrated by the results of numerical simulations of simple flows, showing the evolution of the oriented structure of the material and the variation of macroscopic viscosities with increasing strains. In addition, the influence of the parameters describing the single crystal anisotropy on the overall behaviour of the aggregate is investigated.
Rocznik
Strony
103--126
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
Bibliografia
  • 1. R.B. ALLEY, Flow-law hypotheses for ice-sheet modelling, J. Glaciol., 38, 129, 245-256, 1992.
  • 2. N. AZUMA, A flow law for anisotropic ice and its application to ice sheets, Earth Planet. Sci. Lett., 128, 3-4, 691-614, 1994.
  • 3. D.R. BARAL, K, HUTTER and R. GREVE, Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: .A critical review and new developments, Appl. Mech. Rev., 54, 3, 215-256, 2001.
  • 4. J.F.W. BISHOP and R HILL, A theory of plastic distortion of a polycrystalline aggregate under combined stresses, Phil. Mag. (7th Ser.), 42, 327, 414-427, 1951.
  • 5. J.P. BOEHLER, Representations for isotropic and anisotropic non-polynomial tensor functions, [in:], Applications of Tensor Functions in Solid Mechanics, J. P. BOEHLER [Ed.], pp. 31-53, Springer, Wien 1987.
  • 6. W.F. BUDD and T.H. JACKA, A review of ice rheology for ice sheet modelling, Cold Reg. Sci. Technol., 16, 2, 107-144, 1989.
  • 7. O. CASTELNAU, P. DUVAL, R.A. LEBENSOHN and G.R. CANOVA, Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: Comparison with bound estimates, J. Geophys. Res., 101, B6, 13851-13868, 1996.
  • 8. C.S. M. DOAKE and E. W. WOLFF, Flow law for ice in polar ice sheets, Nature, 314, 6008, 255-257, 1985.
  • 9. P. DUVAL, M. F. ASHBY and I. ANDERMAN, Rate-controlling processes in the creep of polycrystalline ice, J. Phys. Chem., 87, 21, 4066-4074, 1983.
  • 10. A.A. ELVIN, Number of grains required to homogenize etastic properties of polycrystalhne ice. Mech. Mat., 22, 1, 51-64, 1996.
  • 11. O. GAGLIARDINI, M. ARMINJON and D. IMBAULT, An inhomogeneous variational model applied to predict the behaviour of isotropic polycrystalline ice, Arch. Mech., 53, 1, 3-21, 2001.
  • 12. O. GAGLIARDINI and J. MEYSSONNIER, Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal, J. Geophys. Res., 104, B8, 17797-17809, 1999.
  • 13. J.W. GLEN, The creep of polycrystalline ice, Proc.R. Soc. Lond., A 228, 1175, 519-538, 1955.
  • 14. G. GODERT AND K. HUTTER, Induced anisotropy in large ice shields: Theory and its homogenization, Continuum Mech. Thermodyn., 10, 5, 293-318, 1998.
  • 15. J.W. HUTCHINSON, Bounds and self-consistent estimates for creep of polycrystalline maternals, Proc. R. Soc. Lond., A 348, 1652, 101-127, 1976.
  • 16. W.B. KAMB, The glide direction in ice, J. Glaciol., 3, 30, 1097-1106, 1961.
  • 17. L. LLIBOUTRY, Anisotropic, transversely isotropic nonlinear viscosity of rock ice and rheological parameters inferred from homogenization, Int. J. Plast., 9, 5, 619-632, 1993.
  • 18. L. LLIBOUTRY and P. DUVAL, Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies, Ann. Gheophys., 3, 2, 207 224, 1985.
  • 19. A. MANGENEY, F. CALIFAN O and O. CASTELNAU, Isothermal flaw of an anisotropic ice sheet in the vicinity of an ice divide, J. Geophys. Res., 101, B12, 28189-28204, 1996.
  • 20. A. MANGENEY, F. CALIFANO AND K. HUTTER, A numerical study of anisotropic, low Reynolds number, free surface flow for ice sheet modeling, J. Geophys. Res., 102, B10, 22749-22764, 1997.
  • 21. J. MEYSSONNIER AND A. PHILIP, A model for tangent viscous behaviourof anisotropic polar ice, Ann, Glaciol., 23. 253-261, 1996.
  • 22. J. MEYSSONNIER AND A. PHILIP, Remarks on self-consistent modelling of polycrystalline ice, [in:] K. HOTTER, Y. WANG and H. BEER [Eds.], Advances in Cold-Region Thermal Engineering and Sciences, pp. 225-236, Springer, Berlin 1999.
  • 23. A. MOLINARI, G. R. CANOVA AND S. AHZY, A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metali., 35, 12, 2983-2994, 1987.
  • 24. L.W. MORLAND AND R. STAROSZCZYK, Viscous response of polar ice with evolving fabric, Continuum Mech. Thermodyn., 10, 3, 135-152, 1998.
  • 25. P. PIMIENTA, P. DUVAL AND V.Y. LIPENKOV, Mechanical behavior of anisotropic polar ice, [in:] International Association of Hydrological Sciences Publication no. 170, pp. 57-66, 1987, (Symp. Physical Basis of Ice Sheet Modelling, Vancouver 1987).
  • 26. R, STAROSZCZYK, An orthotropic constitutive model for secondary creep of ice, Arch. Mech., 53, 1, 65-85, 2001.
  • 27. R. STAROSZCZYK, A uniform stress, discrete-grain model for induced anisotropy of ice, [in:] Applications of Mechanics in Civil and Hydro-Engineering, K. SZMIDT [Eds.], pp. 295-314, IBW PAN Publishing House, Gdańsk 2001.
  • 28. R. STAROSZCZYK and L.W, MORLAND, Orthotropic viscous response of polar ice, J. Eng. Math., 37, 1-3, 191-209, 2000.
  • 29. R. STAROSZCZYK and L.W. MORLAND, Plane ice-sheet flow with evolving orthotropic fabric, Ann. Glaciol., 30, 93-101, 2000.
  • 30. B. SVENDSEN and K. HUTTER, A continuum approach for modelling induced anisotropy in glaciers and ice sheets, Ann, Glaciol., 23,262-269, 1996.
  • 31. T. THORSTEINSSON, J. KIPFSTUHL and H. MILLER, Textures and fabrics in the GRIP ice core, J. Geophys. Res., 102, C12, 26583-26599, 1997.
  • 32. C.J. VAN DER VEEN AND I.M. WHILLANS, Development of fabric in ice, Cold Reg. Sci. Technol., 22, 2, 171-195, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0002-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.