PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydraulic transients analysis in pipe networks by the method of characteristics (MOC)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of an experimental and theoretical study of the hydraulic transients in straight pipes and numerical simulations of unsteady flow in pipe networks. A mathematical model consists of a set of partial differential equations of hyperbolic type, which have been transformed by the method of characteristics into ordinary differential equations which are solved by the predictor-corrector method. Experimental tests have been performed, in order to examine the hydraulic transients phenomenon, in a single straight steel pipe. The experiments were carried out in the hydraulic laboratory of the Institute of Water Supply and Water Engineering, Environmental Engineering Faculty, Warsaw University of Technology. The numerical results show that the presented one dimensional model for a single pipe correctly describes the phenomenon since there is a good agreement with experimental maximum and minimum oscillations. In the paper, selected exemplary equations in a difference form for the pipe networks are also presented. One calculation example is given relating to the complex water-pipe network consisting of 17 loops, 48 pipelines and 33 nodes, supplied by two independent sources. Water-hammer throughout the whole pipeline network was caused by closing the gate valve at mid-point of one selected pipe. The results of the numerical calculations are presented in graphic form with respect to the final cross-sections of pipes.
Twórcy
autor
  • Gdańsk University of Technology, Faculty for Civil and Environmental Engineering, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland, rwich@pg.gda.pl
Bibliografia
  • 1. Axworthy D. H., Ghidaoui M. S., McInnis D. A. (2000), Extended thermodynamics derivation of energy dissipation in unsteady pipe flow, Journal of Hydraulic Engineering, Proceedings of ASCE, Vol. 126, No. 4, 276–287.
  • 2. Bergant A., Simpson A. R. (1994), Estimating unsteady friction in transient cavitating pipe flow, The 2nd International Conference on Water Pipeline Systems, Proceedings, Edinburgh, Scotland, 3–15.
  • 3. Bergant A., Simpson A. R., Vitkovsky J. (1999), Review of unsteady friction models in transient pipe flow, 9thInternational Meeting on the Behaviour of Hydraulic Machinery Under Steady Oscillatory Conditions, International Association of Hydraulic Research, Brno, Czech Republic, Paper D1, 1–11.
  • 4. Brunone B., Golia U. M., Greco M. (1991), Some remarks on the momentum equations for fast transients, International Meeting on Hydraulic Transients with column separation, 9thRound Table, IAHR, Valencia, Spain, 201–209.
  • 5. Chaudhry M. H. (1979), Applied Hydraulic Transients, Van Nostrand Reinhold Company, New York.
  • 6. Evangelisti G. (1969), Waterhammer analysis by the method of characteristics, L’Energia Elettrica, Nos. 10–12.
  • 7. Fox J. A. (1977), Hydraulic Analysis of Unsteady Flow in Pipe Networks, The Macmillan Press Ltd, London and Basingstoke.
  • 8. Jeppson R. W. (1976), Analysis of Flow in Pipe Networks, Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan.
  • 9. Karney B. W., McInnis D. (1992), Efficient calculation of transient flow in simple pipe networks, Journal of Hydraulic Engineering, Vol. 118, No. 7, 1014–1030.
  • 10. McInnis D., Karney B. W. (1995), Transients in distribution networks: field tests and demand models, Journal of Hydraulic Engineering, Proceedings of ASCE, Vol. 121, No. 3, 218–231.
  • 11. Pezzinga G., Scandura P. (1995), Unsteady flow installations with polymeric additional pipe, Journal of Hydraulic Engineering, Proceedings of ASCE, Vol. 121, No. 11, 802–811.
  • 12. Pezzinga G. (1999), Quasi-2D model for unsteady flow in pipe networks, Journal of Hydraulic Engineering, Proceedings of ASCE, Vol. 125, No. 7, 676–685.
  • 13. Pezzinga G. (2000), Evaluation of unsteady flow resistance by quasi-2D or 1D models, Journal of Hydraulic Engineering, Proceedings of ASCE, Vol. 126, No. 10, 778–785.
  • 14. Rossman L. A. (2000), EPANET 2. Users Manual, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
  • 15. Samani H. M. V., Khayatzadeh A. (2002), Transient flow in pipe networks, Journal of Hydraulic Research, Vol. 40, No. 5, 637–644.
  • 16. Streeter V. L. (1967), Water-hammer analysis of distribution systems, Journal of the Hydraulics Division, Proceedings of the ASCE, Vol. 93, No. HY5, 185–201.
  • 17. Streeter V. L. (1972), Unsteady flow calculations by numerical methods, Proceedings of the ASME, Journal of Basic Engineering, Vol. 94, series D, No. 2, 457–466.
  • 18. Vitkovsky J., Lambert M., Simpson A., Bergant A. (2000), Advances in unsteady friction modeling in transient pipe flow, The 8thInternational Conference on Pressure Surges, BHR, The Hague, The Netherlands, 587–597.
  • 19. Wichowski R. (1999), Unsteady Flow Analysis in Water Supply Networks – Part I, Archives of Hydro-Engineering and Environmental Mechanics, Vol. 44, No. 1–4, 3–29, Part II, Archives of Hydro-Engineering and Environmental Mechanics, Vol. 44, No. 1-4, 31–62.
  • 20. Wichowski R. (2002), Selected Problems of Unsteady Flows in Pipe Networks of Water Supply Systems, Politechnika Gdanska, Monografie 27, (in Polish).
  • 21. Wood D. J., Lingireddy S., Boulos P. F., Karney B.W.,Mcpherson D. L. (2005), Numerical methods for modeling transient flow in distribution systems, Journal AWWA, Vol. 97, No. 7, 104–115.
  • 22. Wylie E. B., Streeter V. L., Suo L. (1993), Fluid Transients in Systems, Prentice Hall, Inc. A Kimon & Schuster Company, New Jersey Englewood Cliffs, NJ 07632.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0039-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.