PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of two coastal profile evolution models to Lubiatowo, Poland and La Barrosa, Spain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two contrasting coastal profile models are applied to three bathymetries including a uniform gradient beach and natural profiles (multi-barred and multi-stepped) obtained from Lubiatowo, Poland and La Barrosa, Spain. The first model, developed at the Institute of Hydro-Engineering of the Polish Academy of Science (IBW PAN) (Poland), couples a quasi-3D model for nearshore hydrodynamics with a quasi-phase resolving sediment transport model which considers transport in the bed load, contact load and outer layers. The second model (PLYMPROF), developed at the University of Plymouth (UK), couples a relatively simple wave transformation model with a new abstracted description of cross-shore sediment transport beneath waves. A variety of model simulations are described, including simple runs with uniform wave forcing (up to 50 days in duration using PLYMPROF) and runs with parameterized wave forcing (wave height and wave period in deep water) for periods with one or two storm events (6-11 days total duration). Both models coped well with the different initial profiles and with uniform and time-varying wave conditions. The results of the simulations suggest that onshore-directed sediment transport in the shoaling and outer surf zones is dominant for the cases considered. Compared to the IBW PAN model, the PLYMPROF model results (using coefficients from a separate study of bar evolution at Duck, USA) show larger offshore-directed transport in the inner surf zone associated with return flow, with the overall sediment transport pattern located considerably closer to the shore. Alteration of a single coefficient in the PLYMPROF model shifts the predicted transport pattern seawards, but also results in enhanced offshore-directed transport. Despite differences in predicted cross-shore sediment transport the two models produced surprisingly similar trends in overall profile evolution suggesting that feedback between existing bathymetry and the sediment transport pattern may exert a major control on profile development. Results also suggested that bar migration patterns cannot be simply related to the occurrence or absence of storm conditions, but rather depend more subtly on the exact placement of wave breaking locations in relation to existing bars. Incorporation of tidal water level variations for La Barrosa produced small changes in model predictions, with tidal migration of the sediment flux pattern suppressing the development of bar morphology in line with the form of the observed profile.
Twórcy
autor
autor
autor
  • Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom, tohare@plymouth.ac.uk
Bibliografia
  • 1. Battjes J. A., Jansen J. P. F. M. (1978), Energy loss and set-up due to breaking of random waves, Proceedings of the 16th International Conference on Coastal Engineering, ASCE, New York, 570–587.
  • 2. Church J. C., Thornton E. B. (1993), Effects of breaking wave induced turbulence in a longshore current model, Coastal Engineering, 20, 1–28.
  • 3. Dean R. G. (1977), Equilibrium beach profiles: US Atlantic and Gulf Coasts, Department of Civil Engineering, Ocean Engineering Report No. 12, University of Delaware, Newark, Delaware.
  • 4. Deigaard R. (1993), Modelling of sheet flow: dispersion stresses vs. the diffusion concept, Progress Report 74, Institute of Hydrodynamic and Hydraulic Engineering, Technical University of Denmark, 65–81.
  • 5. Fredsøe J. (1984), Turbulent boundary layer in combined wave-current motion, Journal of Hydraulic Engineering, 110, 1103–1120.
  • 6. Guza R. T., Thornton E. B. (1982), Swash oscillations on a natural beach, Journal of Geophysical Research, 87, 483–491.
  • 7. Henderson S. M., Allen J. S., Newberger P. A. (2004), Nearshore sandbar migration predicted by an eddy-diffusive boundary layer model, Journal of Geophysical Research, 109, C06024, doi:10.1029/2003JC002137.
  • 8. Kaczmarek L. M., Ostrowski R. (1992), Modelling of wave-current boundary layer in the coastal zone, Proceedings of the 23r dInternational Conference on Coastal Engineering, ASCE, New York, 350–363.
  • 9. Kaczmarek L. M., Ostrowski R. (1996), Asymmetric and irregular wave effects on bedload: theory versus laboratory and field experiments, Proceedings of the 25thInternational Conference on Coastal Engineering, ASCE, New York, 3467–3480.
  • 10. Kaczmarek L. M., Ostrowski R. (2002), Modelling intensive near-bed sand transport under wave-current flow versus laboratory and field experiments, Coastal Engineering, 45, 1–18.
  • 11. Kobayashi N., Johnson B. (2001), Sand suspension, storage, advection and settling in surf and swash zones, Journal of Geophysical Research, 106, 9363–9376.
  • 12. Lippmann T. C., Brookin A. H., Thornton E. B. (1996), Wave energy transformation on natural profiles, Coastal Engineering, 27, 1–20.
  • 13. Longuet-Higgins M. S., Stewart E. W. (1964), Radiation stress in water waves, a physical discussion with applications, Deep Sea Research, 11, 529–562.
  • 14. Marino-Tapia I. J., O’Hare T. J., Russell P. E., Davidson M. A., Huntley D. A., Cross-shore sediment transport on natural beaches and its relation to sand bar migration patterns: Part 2 Application of the field transport parameterization, Journal of Geophysical Research, submitted.
  • 15. Masselink G. (2004), Formation and evolution of multiple intertidal bars on macrotidal beaches: application of a morphodynamic model, Coastal Engineering, 51, 713–730.
  • 16. O’Hare T. J., Huntley D. A. (2006), Comment on “Morphologic properties derived from a simple cross-shore sediment transport model” by N. G. Plant, B. G. Ruessink, and K. M. Wijnberg, Journal of Geophysical Research, 111, C07003, doi:10.1029/2004JC002808.
  • 17. Ostrowski R. (2002), Application of cnoidal wave theory in modelling of sediment transport, Archives of Hydro-Engineering and Environmental Mechanics, 49(1), 107–118.
  • 18. Plant N. G., Holman R. A., Freilich M. H., Birkemeier W. A. (1999), A simple model for interannual sandbar behaviour, Journal of Geophysical Research, 104, 15755–15776.
  • 19. Plant N. G., Ruessink B. G., Wijnberg K. M. (2001), Morphological properties derived froma simple cross-shore sediment transport model, Journal of Geophysical Research, 106, 945–958.
  • 20. Plant N. G., Holland K. T., Puleo J. A., Gallagher E. L. (2004), Prediction skill of nearshore profile evolution models, Journal of Geophysical Research, 109, C01006, doi:10.1029/2003JC001995.
  • 21. Rakha K. A., Deigaard R., Brøker I. (1997), A phase-resolving cross-shore sediment transport model for beach profile evolution, Coastal Engineering, 31, 231–261.
  • 22. Raubenheimer B., Guza R. T., Elgar S. (1996), Wave transformation across the inner surf zone, Journal of Geophysical Research, 101, 25589–25597.
  • 23. Ribberink J. S., Al-Salem A. (1994), Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow, Journal of Geophysical Research, 99, 12707–12727.
  • 24. Ruessink B. G., Walstra D. J., Southgate H. N. (2003), Calibration and verification of a parametric wave model on barred beaches, Coastal Engineering, 1051, 1–11.
  • 25. Sallenger A. H., Holman R. A. (1985), Wave energy saturation on a natural beach of variable slope, Journal of Geophysical Research, 90, 11939–11944.
  • 26. Sénéchal N., Dupuis H., Bonneton P., Howa H., Pedreros R. (2001), Observation of irregular wave transformation in the surf zone over a gently sloping sandy beach on the French Atlantic coastline, Oceanologica Acta, 24, 545–556.
  • 27. SzmytkiewiczM. (1995), 2D velocity distributions in nearshore currents, Proceedings of the Coastal Dynamics ’95 Conference, ASCE, New York, 366–376.
  • 28. Szmytkiewicz M. (2002), Quasi-3D model of wave-induced currents in coastal zone, Archives of Hydro-Engineering and Environmental Mechanics, 49(1), 57–81.
  • 29. Thornton E. B., Guza R. T. (1983), Transformation of wave height distribution, Journal of Geophysical Research, 88, 5925–5938.
  • 30. van Rijn L. C., Walstra D. J. R., Grasmeijer B., Sutherland J., Pan S., Sierra J. P. (2003), The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based Profile models, Coastal Engineering, 47, 295–327.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0039-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.