PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasonic scattering from compressible cylinders including multiple scattering and thermoviscous effects

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a study of acoustic scattering by a pair of parallel circular thermoviscous fluid cylinders submerged in an unbounded viscous thermally conducting medium. The translational addition theorem for cylindrical wave functions, the appropriate wave field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which two identical thermoviscous fluid cylinders are insonified by a nearby parallel acoustic line source at broadside/end-fire incidence. The backscattered pressure amplitude is numerically evaluated and discussed for representative values of the parameters characterizing the system. The effects of source position, transmission frequency and proximity of the two cylinders are examined. Particular attention has been focused on multiple scattering interactions as well as thermoviscous effects. The imperative influence of thermoviscosity on the analysed phenomena is revealed by notable reduction of backscattering amplitude at intermediate and high frequencies. The numerical results also show that the multiple scattering interaction effects are of great (moderate) consequence for end-fire (broadside) incidence at small separations of the cylinders. A limiting case involving a pair of ideal compressible fluid cylinders is considered and a fair agreement with preceding solutions is established.
Twórcy
  • Iran University of Science and Technology, Department of Mechanical Engineering, Acoustics Laboratory Narmak, Tehran 16844, Iran, hashemi@iust.ac.ir
Bibliografia
  • [1] ABRAMOWITZ, M., STEGUN, I.A., Handbook of mathematical functions, National Bureau of Standards, Washington 1965.
  • [2] ALEMAR, J.D., DELSANTO, P.P., ROSARIO, E., NAGEL, A., UBERAL, H., Spectral analysis of the scattering of acoustic waves from a fluid cylinder I: Denser fluid loading, Acustica, 61, 1–6 (1986).
  • [3] ALEMAR, J.D., DELSANTO, P.P., ROSARIO, E., NAGEL, A., UBERAL, H., Spectral analysis of the scattering of acoustic waves from a fluid cylinder, II: Denser fluid inside, Acustica, 61, 7–13 (1986).
  • [4] ALEMAR, J.D., DELSANTO, P.P., ROSARIO, E., NAGEL, A., UBERAL, H., Spectral analysis of the scattering of acoustic waves from a fluid cylinder. III: solution of the inverse scattering problem, Acustica, 61, 14–20 (1986).
  • [5] BABICK, F., HINZE, F., RIPPERGER, S., Dependence of ultrasonic attenuation on the material properties, Colloids Surf., 172, 33–46 (2000).
  • [6] BAILEY, D.H., A Fortran-90 based multiprecision system, ACM Trans. Math. Soft., 21, 379–387 (1995).
  • [7] BALANIS, C.A., Advanced engineering electromagnetics, Wiley, New York 1989.
  • [8] BELTMAN, W.M., Viscothermal wave propagation including acousto-elastic interaction, Enschede, PhD-thesis, chapter 2, 1998. [www.dinkel.utwente.nl/webdocs/wb/1/t000000b.pdf].
  • [9] BOAG, A., LEVIATAN, Y., BOAG, A., Analysis of acoustic scattering from fluid cylinders using a multifilament source model, J. Acoust. Soc. Am., 83, 1–8 (1988).
  • [10] CHANDRA, K., THOMPSON, C., Improved perturbation method for scattering from a fluid cylinder, J. Acoust. Soc. Am., 92, 1047–1055 (1992).
  • [11] DECANINI, Y., Algebraic aspects of multiple scattering by two parallel cylinders: Classification and physical interpretation of scattering resonances, J. Sound Vib., 221, 785–804 (1999).
  • [12] DONGARRA, J., BUNCH, J., MOLER, C. STEWART, G.W., LINPACK user’s guide, SIAM, Philadelphia, PA, 1979.
  • [13] GINSBERG, J.H, On the effect of viscosity in scattering from partially coated infinite cylinders, J. Acoust. Soc. Am., 112, 46–54 (2002).
  • [14] HARTMAN, B., LEE, G.F., LEE, J.D., Loss factor height and width limits for polymer relaxations, J. Acoust. Soc. Am., 95, 226–223 (1994).
  • [15] HASHEMINEJAD, M., BADSAR, A., Acoustic scattering by a pair of poroelastic spheres, Quart. J. Mech. Appl. Math., 57, 95–113 (2004).
  • [16] HASHEMINEJAD, M., GEERS, T.L., Modal impedance for two spheres in a thermoviscous fluid, J. Acoust. Soc. Am., 94, 2205–2214 (1993).
  • [17] HASHEMINEJAD, S.M., SAFARI, N., Acoustic scattering from viscoelastically coated spheres and cylinders in viscous fluids, J. Sound Vib., 280, 101–125 (2005).
  • [18] IVANOV, Y.A., Diffraction of electromagnetic waves on two bodies, National Aeronautics and Space Administration, Washington, DC, 1968.
  • [19] KOZHIN, V.N., Sound propagation in a viscous medium containing cylindrical filaments, Akust. Zh., 16, 542–547 (1971).
  • [20] KUBENKO, V.D., Diffraction of acoustic waves by two nonparallel circular cylinders, Sov. Appl. Mech., 25, 34–41 (1989).
  • [21] LEE, J.P., SONG, J.H., CHOI, M.S., The effects of material attenuation on acoustic resonance scattering from cylindrical tubes, Ultrasonics, 34, 737–745 (1996).
  • [22] LIN, W.H., RAPITS, A.C., Thermoviscous effects on acoustic scattering by thermoelastic solid cylinders and spheres, J. Acoust. Soc. Am., 74, 1542–1554 (1983).
  • [23] LIN, W.H., RAPTIS, A.C., Sound scattering by a group of oscillatory cylinders, J. Acoust. Soc. Am., 77, 15–28 (1985).
  • [24] LIN, W.H., RAPTIS, A.C., Sound scattering from a thin rod in a viscous medium, J. Acoust. Soc. Am., 79, 1693–1700 (1986).
  • [25] MARR-LYON, M.J., THIESSEN, D.B., MARSTON, P.L., Passive stabilization of capillary bridges in air with acoustic radiation pressure, Phys. Rev. Lett., 86, 2293–2296 (2001).
  • [26] MARSTON, P.L., Capillary bridge stability in an acoustic standing wave: Linearized analysis of passive stabilization with radiation pressure, J. Acoust. Soc. Am., 97, 3377 (1995).
  • [27] MARSTON, P.L., Born approximation for scattering by evanescent waves: Comparison with exact scattering by an infinite fluid cylinder, J. Acoust. Soc. Am., 115, 2473 (2004).
  • [28] MITRI, F.G., Acoustic backscattering form function of absorbing cylinder targets (L), J. Acoust. Soc. Am., 115, 1411–1413 (2004).
  • [29] MITRI, F.G., Theoretical calculation of the acoustic radiation force acting on elastic and viscoelastic cylinders placed in a plane standing or quasistanding wave field, Eur. Phys. J., B44, 71–78 (2005).
  • [30] MITRI, F.G., Radiation Force acting on an absorbing cylinder placed in an incident plane progressive acoustic field, J. Sound Vib., 284, 494–502 (2005).
  • [31] MITRI, F.G., Frequency dependence of the acoustic radiation force acting on absorbing cylindrical shells, Ultrasonics, 43, 271–277 (2005).
  • [32] MORSE, P., INGARD, K., Theoretical acoustics, McGraw-Hill, New York 1968.
  • [33] PRINCEN, H.M., Highly concentrated emulsions. I. Cylindrical systems, J. Colloid Interface Sci., 71, 55–66 (1979).
  • [34] ROUMELIOTIS, J.A., ZIOTOPOULOS, A.P., KOKKORAKIS, G.C., Acoustic scattering by a circular cylinder parallel with another of small radius, J. Acoust. Soc. Am., 109, 870–877 (2001).
  • [35] ROUSSELOT, J.L., Field diffracted by a fluid cylinder. Comparison between the geometrical theory of diffraction and a model solution, Acustica, 80, 14–20 (1994).
  • [36] SCHARSTEIN, R.W., Acoustic scattering from two parallel soft cylinders, Proc. IEEE conf., 2, 534–537 (1992).
  • [37] SCOTTI, T., WIRGIN, A., Reconstruction of the three mechanical material constants of a lossy fluid-like cylinder from low-frequency scattered acoustic fields, Comptes Rendus Mec., 332, 717–724 (2004).
  • [38] SHERER, S.E., Scattering of sound from axisymetric sources by multiple circular cylinders, J. Acoust. Soc. Am., 115, 488–496 (2004).
  • [39] SKUDRZYK, E., The Foundations of acoustics, Springer-Verlag, New York 1971.
  • [40] TEMKIN, S., Elements of acoustics, Wiley, New York 1981.
  • [41] TWERSKY, V., Multiple scattering of radiation by an arbitrary configuration of parallel cylinders, J. Acoust. Soc. Am., 24, 42–45 (1952).
  • [42] WEI, W., THIESSEN, D.B., MARSTON, P.L., Acoustic radiation force on a compressible cylinder in a standing wave, J. Acoust. Soc. Am., 116, 201–208 (2004).
  • [43] WU, F., HOU, Z., LIU, Z., LIU, Y., Acoustic band gaps in two-dimensional rectangular arrays of liquid cylinders, Solid State Commun., 123, 239–242 (2002).
  • [44] YOUNG, J.W., BERRAND, J.C., Multiple scattering by two cylinders, J. Acoust. Soc. Am., 1190–1193 (1975).
  • [45] ZHANG, S., JIN, J., Computation of special functions, Wiley, New York 1996.
  • [46] ZHUK, A.P. , Action of an acoustic wave on a system of two parallel circular cylinders in an ideal fluid, Sov. Appl. Mech., 27, 101–106 (1991).
  • [47] ZHUK, A.P., Study of the interaction of an acoustic wave in a viscous liquid with two cylinders placed in parallel, Sov. Appl. Mech., 27, 321–327 (1991)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0037-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.