PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FEM amd BEM computing costs for acoustical problems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
FEM and BEM computing costs are compared for acoustical problems. The cost analysis was carried out for bounded areas of simple shapes for objects with acoustical losses (e.g. with sound absorbing materials). BEM's variational-collocative scheme (DBEM) and its variational scheme (IBEM) were considered. Computing costs were calculated, taking into account main matrix composition costs and main system of equations solution costs. The costs were calculated for the type of adopted discrete elements and the order of quadrature used. Analytical relations for calculating main matrix composition costs for BEM have been derived. The analysis shows that FEM computing costs can be lower than BEM computing costs. Moreover, BEM computing costs are strongly dependent on the order of the quadrature used. The presented results provide a basis for the choice of the most cost-effective method depending on the size of an acoustical problem.
Słowa kluczowe
Twórcy
autor
autor
  • Wrocław University of Technology, Institute of Telecommunication, Teleinformatics and Acoustics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, Romuald.Bolejko@pwr.wroc.pl
Bibliografia
  • [1] ESTORFF O VON, Boundary elements in acoustics, WIT Press, Southampton 2000.
  • [2] BETTESS P., Operation counts for boundary integral and finite element methods, International Journal of Numerical Methods in Engineering, 17, 306–308 (1981).
  • [3] HARARI I., GROSH K., HUGHES T.J.R., MALHOTRA M., PINSKY P.M., STEWARD J.R., THOMPSON L.L., Recent developments in finite element methods for structural acoustics, Archives of Computational Methods in Engineering, 3, 204–226 (1996).
  • [4] HORN R.A., JOHNSON C.R., Matrix analysis, Cambridge University Press, Cambridge 1989.
  • [5] DOBRUCKI A.B., Numerical modelling of the moving system of electrodynamic loudspeaker [in Polish], Scientific Papers of the Institute of Telecommunications and Acoustics of the Wrocław University of Technology, Wrocław 1992.
  • [6] Sysnoise rev. 5.2, Theoretical manual, Rev.5.2, Numerical Integration Technologies, Belgium, 1995.
  • [7] Bolejko R., Numerical modelling of the acoustic field in interior and exterior domain, considering impedance boundary condition [in Polish], PhD Thesis, Wrocław University of Technology, Wrocław 2004.
  • [8] DING W.P., CHEN H.L., A symmetrical finite element model for structure-acoustic coupling analysis of an elastic, thin-walled cavity, Journal of Sound and Vibration, 243, 547–559 (2001).
  • [9] KAGAWA Y., YAMABUSHI T., SUGIHARA K., A finite element approach to a coupled structuralacoustic radiation system with application to loudspeaker characteristic calculation, Journal of Sound and Vibration, 69, 229–243 (1980).
  • [10] SANDBERG G., GÖRANSSON P., A symmetric finite element formulation for acoustic fluid-structure interaction analysis, Journal of Sound and Vibration, 123, 507–515 (1988).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0037-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.