PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the sound envelope auditory processing using the non-negative-impulse-response modulation filters concept. Part I. Initial simulations

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article concerns with a new model of the sound envelope processing in the auditory system. The so-called non-negative-impulse-response (NNIR) modulation filters concept argues that if any form of the acoustic signal envelope filtering took place in the auditory pathway, this process should not be described in terms of a band-pass filtration. This modification of the traditional model of the auditory system temporal resolution, based on the modulation filterbank (MFB) activity, results from the cardinal property of the sound envelope and its neural representation, i.e. neural discharges period histogram, which are unavoidably unipolar signals of non-negative values. It has been assumed that if hypothetical modulation filters existed, they should be characterised by a non-negative-impulse-response and, consequently, the frequency characteristics of such filters might not reveal the band-pass properties. The results of the model investigations are compared with selected psychophysical and physiological data.
Twórcy
autor
  • Adam Mickiewicz University, Institute of Acoustics, Department of Room Acoustics and Psychoacoustics, Umultowska 85, 61-614 Poznań, Poland, konsbol@wp.pl
Bibliografia
  • [1] EISENBERG L. S., DIRKS D. D. DIRKS, BELL T. S., Speech recognition in amplitude-modulated noise of listeners with normal and listeners with impaired hearing, Journal of Speech and Hearing Research, 38, 222–233 (1995).
  • [2] LORENZI C., BERTHOMMIER F., APOUX F., BACRI N., Effects of envelope expansion on speech recognition, Hearing Research, 136, 1–2, 131–138 (1999).
  • [3] BURNS E.M., VIEMEISTER N. F., Nonspectral pitch, Journal of the Acoustical Society of America, 60, 863–869 (1976).
  • [4] HALL J.W., TYLER R. S., FERNANDES M. A., Factors influencing the masking level difference in cochlear hearing-impaired and normal-hearing listeners, Journal of Speech and Hearing Research, 27, 145–154 (1984).
  • [5] VIEMEISTER N. F., Temporal modulation transfer functions based on modulation thresholds, Journal of the Acoustical Society of America, 66, 1364–1380 (1979).
  • [6] LORENZI C., SOARES C., VONNER T., Second-order temporal modulation transfer functions, Journal of the Acoustical Society of America, 110, 2, 1030–1038 (2001).
  • [7] DERLETH R. P., DAU T., On the role of envelope fluctuation processing in spectral masking, Journal of the Acoustical Society of America, 108, 1, 285–296 (2000).
  • [8] SĘK A. P., SKRODZKA E. B., Tuning in the amplitude modulation rate domain, Archives of Acoustics, 23, 4, 491–498 (1998).
  • [9] SĘK A., SKRODZKA E., Maskowanie w dziedzinie modulacji. Krzywe strojenia modulacji, [in:] Open Seminary on Acoustics, Gda´nsk, Poland 1997.
  • [10] SĘK A., MOORE B. C. J., Testing the concept of a modulation filter bank: The audibility of component modulation and detection of phase change in three-component modulators, Journal of the Acoustical Society of America, 113, 5, 2803–2811 (2003).
  • [11] HOUTGAST T., Frequency selectivity in amplitude-modulation detection, Journal of the Acoustical Society of America, 85, 1676–1680 (1989).
  • [12] EWERT S. D., DAU T., Psychophysical tuning in AM processing, [in:] Psychophysics, Physiology and Models of Hearing, DAU T., HOHMANN V., KOLLMEIER B. [Eds.], pp. 73–76, World Scientific, Singapore 1999.
  • [13] BACON S. P., GRANTHAM W., CAMPEN L. E.,Modulation masking patterns, Journal of the Acoustical Society of America, 83, S35 (1988).
  • [14] YOST W. A., SHEFT S., OPIE J., Modulation interference in detection and discrimination of amplitude modulation, Journal of the Acoustical Society of America, 86, 2138–2147 (1989).
  • [15] MOORE B. C. J., An introduction to the psychology of hearing, 5th Ed., Academic Press, London 2003.
  • [16] SCHREINER C. E., LANGNER G., Coding of temporal patterns in the central auditory system, [in:] Auditory Function: Neurobiological Bases of Hearing, EDELMAN G., GALL W., COWAN W. [Eds.], pp. 337–361, Wiley, New York 1988.
  • [17] LEMAŃSKA J., SĘK A., Maskowanie w dziedzinie modulacji amplitudowej, [in:] Wave methods and mechanics in biomedical engineering, Polish Acoustical Society, Kraków–Zakopane 2000.
  • [18] SĘK A., MOORE B. C J., Mechanisms of modulation gap detection, Journal of the Acoustical Society of America, 111, 6, 2783–2792 (2002).
  • [19] OXENHAM A., DAU T., Towards a measure of auditory-filter phase response, Journal of the Acoustical Society of America, 110, 6, 3169–3178 (2001).
  • [20] DAU T., Modeling auditory processing of amplitude modulation, University of Oldenburg, 1996.
  • [21] LEMAŃSKA J., SE˛K A., RYBICKA W., Masking in the amplitude modulation rate domain, Archives of Acoustics, 28, 3, 151–159 (2003).
  • [22] DAU T., VERHEY J. L., KOHLRAUSCH A., Intrinsic envelope fluctuations and modulationdetection thresholds for narrow-band noise carriers, Journal of the Acoustical Society of America, 106, 2752–2760 (1999).
  • [23] DAU T., KOLLMEIER B., KOHLRAUSCH A., Modeling auditory processing of amplitude modulation: I. Detection and masking with narrowband carriers, Journal of the Acoustical Society of America, 102, 2892–2905 (1997).
  • [24] DAU T., KOLLMEIER B., KOHLRAUSCH A., Modeling auditory processing of amplitude modulation: II. Spectral and temporal integration, Journal of the Acoustical Society of America, 102, 2906–2919 (1997).
  • [25] CHI T., GAO T., GUYTON M. C., SAMMA S., Spectro-temporal modulation transfer functions and speech intelligibility, Journal of the Acoustical Society of America, 106, 2719–2731 (1999).
  • [26] PALMER A. R., Encoding of rapid amplitude fluctuations by cochlear nerve in the guinea pig, Archives of Otolarynglogy, 236, 197–202 (1982).
  • [27] MOORE B. C. J., GLASBER B., GAUNT T., CHILD T., Across-channel masking of changes in modulation depth for amplitude- and frequency-modulated signals, Q. J. Exp. Psychol., 43A, 3, 327–347 (1991).
  • [28] BACON S. P. GRANTHAM D.W., Modulation masking: effects of modulation frequency, depth and phase, Journal of the Acoustical Society of America, 85, 2575–2580 (1989).
  • [29] KORDUS M., S ˛ EK A. P., KOCI´NSKI J., Bianural masking of amplitude modulation, Archives of Acoustics, 30, 1, 3–17 (2005).
  • [30] RYBICKA W., SĘK A., Detection of the amplitude modulation for modulating signals characterized by different crest factors, Archives of Acoustics, 28, 4, 203–222 (2003).
  • [31] RYBICKA W., SĘK A., SUZUKI Y., Detection and modelling of AM thresholds for modulators with different crest factors, [in:] Structures-Waves-Human Health, Biomedical Engineering, Kraków– Zakopane, Poland 2003.
  • [32] SĘK A., SUZUKI Y., RYBICKA W., Amplitude modulation thresholds for modulators with different crest factor, [in:] The 2003 Spring Meeting of the Acoustical Society of Japan, Waseda University, Tokyo, Japan 2003.
  • [33] MOLLER A. R., Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus, Acta Physiological Scandanavica, 98, 157–167 (1976).
  • [34] MOLLER A. R., Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat, Acta Physiological Scandanavica, 86, 223–238 (1972).
  • [35] MOLLER A. R., Coding of time varying sounds in the cochlear nucleus, Audiology, 17, 446–468 (1977).
  • [36] FRISINA R. D., YOUND E. D., COSTALUPES J. A., Encoding of amplitude modulation in the gerbil cochlear nucleus. I. A hierarchy of enhacement, Hearing Research, 44, 99–122 (1990).
  • [37] REES A., MOLLER A. R., Responses of neurons in the inferior colliculus of the rat to AM and FM tones, Hearing Research, 10, 301–310 (1983).
  • [38] REES A., PALMER A. R., Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise, Journal of the Acoustical Society of America, 85, 5, 1978–1994 (1989).
  • [39] LANGNER G., SCHREINER C. E., Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms, Journal of Neurophysiology, 60, 1799–1822 (1988).
  • [40] DAU T., VERHEY J. L., Modelling across-frequency processing of amplitude modulation, [in:] Psychophysics, Physiology and Models of Hearing, DAU T., HOHMANN V., KOLLMEIER B. [Eds.], pp. 229–234, World Scientific, Singapore 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0037-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.