PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soft Soil Overconsolidation and CPTU Dissipation Test

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stress state and stress history of subsoil under the flood embankment was evaluated with CPTU and DMT tests. The CPTU dissipation tests in soft soils under the central part of the embankment and on the upstream and downstream sides were performed. The shape of pore water dissipation curve reflects stress state and stress history. Monotonic decay of water pore pressure was found for normally consolidated soils. Dilatory pore pressure response is typical for overconsolidated soils. Methods for the flow characteristics determination (coefficient of consolidation and hydraulic conductivity) were presented.
Słowa kluczowe
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland, abal@pg.gda.pl
Bibliografia
  • 1. Andersen A., Berre T., Kleven A., Lunne T. (1979), Procedures used to obtain soil parameters for foundation engineering in the North Sea, Marine Geotechnology, 3(3), 201–266.
  • 2. Baligh M. M., Levadoux J. N. (1986), Consolidation after undrained piezocone penetration, Part II: Interpretation, Journal of Geotechnical Engineering, ASCE, 112, 727–745.
  • 3. Bałachowski L. (2006), Interpretation of CPTU dissipation test in normally consolidated soils, Inzynieria Morska i Geotechnika, 1, 32–38 (in Polish).
  • 4. Burns S. E., Mayne P. W. (1995), Coefficient of consolidation from type 2 piezocone dissipation in overconsolidated clays, Proceedings of the Int. Symposium on Cone Penetration Testing, Vol. 2, Swedish Geotechnical Society, Link¨oping, Sweden, 137–142.
  • 5. Burns S. E., Mayne P. W. (1998), Monotonic and dilatory pore pressure decay during piezocone tests in clay, Canadian Geotechnical Journal, 35, 1063–1073.
  • 6. Burns S. E., Mayne P. W. (2002), Interpretation of seismic piezocone results for the estimation of hydraulic conductivity in clays, Geotechnical Testing Journal, 25(3), 334–341.
  • 7. Chang M. F., Teh C. I., Cao L. F. (2001), Undrained cavity expansion in modified Cam clay II: Application to the interpretation of the piezocone test, G´eotechnique, 51, No. 4, 335-350.
  • 8. Demers D., Leroueil S. (2002), Evaluation of preconsolidation pressure and the overconsolidation ratio from piezocone tests of clay deposits in Quebec, Canadian Geotechnical Journal, 39, 174–192.
  • 9. Elsworth D. (1993), Analysis of piezocone dissipation data using dislocation methods, Journal of Geotechnical Engineering ASCE, 119(10), 1601–1623.
  • 10. Hegazy Y. A., Mayne P. W. (1995), Statistical correlations between vs and CPT data for different soil types, Proc. Int. Symposium on Cone Penetration Testing, CPT’95, Link¨oping, Sweden, 173–178.
  • 11. Houlsby G. T., Teh C. I. (1988), Analysis of the piezocone in clay, Proc. of the International Symposium on Penetration Testing, ISOPT-1, Orlando, 2, Balkema Pub., Rotterdam, 777–83.
  • 12. Kabir M. G., Lutenegger A. J. (1990), In situ estimation of the coefficient of consolidation of clays, Canadian Geotechnical Journal, 27, 58–67.
  • 13. Keaveny J. M., Mitchell J. K. (1986), Strength of fine-grained soils using the piezocone, Proc. Of ASCE Special Conference In Situ86, Blacksburg, 668–685.
  • 14. Kulhawy F. H., Mayne P. W., Kay J. N. (1990), Observations on the development of pore water stresses during piezocone penetration in clays, Canadian Geotechnical Journal, 27, 418–428.
  • 15. Kurup P. U., Tumay M. T. (1995), Piezocone dissipation curves with initial excess pore pressure variation, Proc. Int. Symposium on Cone Penetration Testing, CPT’95, Link¨oping, Sweden, 195–200.
  • 16. Larsson R., Mulabdic M. (1991), Piezocone Tests in Clay, Swedish Geotechnical Institute, Linköping, Report, 42.
  • 17. Lechowicz Z., Rabarijoely S. (1997), Organic Subsoil Evaluation on DMT Tests, Archives of Wydział Melioracji i Inzynierii Srodowiska, SGGW (in Polish).
  • 18. Lechowicz Z., Szymanski A. (2002), Deformation and Stability of the Embankments on Organic Soils, Part I, SGGW Publication, Warsaw (in Polish).
  • 19. Lunne T., Robertson P. K., Powel J. J. M. (1997), Cone Penetration Testing in Geotechnical Practice, Blackie Academic and Professional.
  • 20. Marchetti S. (1980), In situ tests by flat dilatometer, Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, No. GT3, 299–321.
  • 21. Marchetti S., Monaco P., Totani G., Calabrese M. (2001), The flat dilatometer test (DMT) in soil investigations. A report by the ISSMGE Committee TC16, Proc. IN SITU 2001, Bali, May 21, 41 p.
  • 22. Marchetti S., Monaco P., Totani G. (2004), Discussion of “Consolidation and permeability properties of Singapore marine clay” by J. Chu, Myint Win Bo, M. F. Chang and V. Choa, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130, No. 3, 339–340.
  • 23. Mayne P. W., Robertson P. K., Lunne T. (1998), Clay stress history evaluated from seismic piezocone tests, Proc. Geotechnical Site Characterization, Robertson and Mayne (eds), Balkema, Rotterdam, 1113–1118.
  • 24. Mayne P.W., Burns S. E. (2000), An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils, Discussion, Canadian Geotechnical Journal, 37, 1395–1397.
  • 25. Mayne P. W. (2001), Stress-strain-strength-flow parameters from enhanced in-situ tests, Proc. IN SITU, Bali, May 21, 27–48.
  • 26. Młynarek Z. (2003), Current trends for in-situ determination of soil parameters – part I, Inzynieria Morska i Geotechnika, No. 6, 377–383 (in Polish).
  • 27. Młynarek Z. (2004), Current trends for in-situ determination of soil parameters – part II, Inzynieria Morska i Geotechnika, No. 1, 22–28 (in Polish).
  • 28. Parez L., Fauriel R. (1988), Advantages from piezocone application to in-situ tests, R´evue Franc¸aise de G´eotechnique, 44, 13–27 (in French).
  • 29. Powell J. J. M., Uglow I. M. (1988), Marchetti dilatometer testing in UK soils, Proc. Int. Sym. On Penetration Testing, Orlando, 1, 555–562.
  • 30. Puech A., Foray P. (2002), Refined model for interpreting shallow penetration CPTs in sands, Proc. Offshore Technology Conference, Houston, Texas U.S.A., 6–9 May, Paper No. 14275.
  • 31. Robertson P. K., Sully J. P., Woeller D. J., Lunne T., Powell J. J. M., Gillespie D. G. (1992), Estimating coefficient of consolidation from piezocone tests, Canadian Geotechnical Journal, 29, 539–550.
  • 32. Sikora Z., Michalak R., Bałachowski L. (2004), CPTU sounding of the subsoil under the road embankment, Proc. ConferenceWsp´ołpraca budowli z podłozem gruntowym, t. 1, Białowieza 17–18 czerwca, 215–223 (in Polish).
  • 33. Sully P. J., Robertson P. K., Campanella R. G., Woeller D. J. (1999), An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils, Canadian Geotechnical Journal, 36, 369–381.
  • 34. Tanaka Y., Sakagami T. (1989), Piezocone testing in underconsolidated clay, Canadian Geotechnical Journal, 26, 563–567.
  • 35. Teh C. I. (1987), An Analytical Study of the Cone Penetration Test, D. Phil. thesis, Oxford University.
  • 36. Teh C. I., Houlsby G. T. (1991), An analytical study of the cone penetration test in clay, G´eotechnique, 41, 17–34.
  • 37. Wolski W. (1988), Geotechnical properties of peats and peaty soils. Methods of their determination, General report, Proc. 2nd Baltic Conf. On Soil Mechanic and Foundation Eng., Tallin.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0037-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.