PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D Lattice Model for Fracture in Brittle Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The numerical simulations show the potential of a lattice discrete approach to model fracture during brittle materials in different two-dimensional quasi-static processes of loading behaviour. The 2D calculations were carried out for brittle specimens subject to uniaxial compression, uniaxial extension and shear. The effect of the specimen size on the global stress-strain diagram during uniaxial tension was also investigated. The advantages and disadvantages of the model were outlined.
Twórcy
autor
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland, tejchmk@pg.gda.pl
Bibliografia
  • 1. Bazant Z. P., Bhat P. D. (1976), Endochronic theory of inelasticity and failure of concrete, J. Engng. Mech. Div. ASCE, 102, 701–722.
  • 2. Bazant Z. P. (1986), Mechanics of distributed cracking, Appl. Mech. Rev., 26, 675–705.
  • 3. Bazant Z. P., Shieh C. L. (1978), Endochronic model for nonlinear triaxial behaviour of concrete, Nucl. Engng. Des., 47, 305–315.
  • 4. Bazant Z., Ozbolt J. (1990), Non-local microplane model for fracture, damage and size effect in structures, J. Engng. Mech. ASCE, 116, 2485–2505.
  • 5. Bazant Z. P., Jirasek M. (2002), Nonlocal integral formulations of plasticity and damage: survey of progress, J. Engng. Mech., 128, 11, 1119–1149.
  • 6. Bazant Z. P. (2003), Scaling of Structural Strength, Hermes-Penton, London.
  • 7. Bobinski J., Tejchman J. (2004), Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity, Computers and Concrete, Vol. 4, 433–455.
  • 8. Bobinski J., Tejchman J. (2005), Modelling of concrete behaviour with a non-local continuum damage approach, Archives of Hydro-Engineering and Environmental Mechanics, 52, 2, 85–102.
  • 9. Bobinski J., Tejchman J. (2006), Modelling of size effects in concrete using elasto-plasticity with non-local softening, Archives of Civil Engineering, 52, 1, 7–35.
  • 10. de Borst R., Pamin J., Geers M. (1999), On coupled gradient-dependent plasticity and damage theories with a view to localization analysis, Eur. J. Mech. A/Solids, 18, 6, 939–962.
  • 11. Burt N. J., Dougill J. W. (1977), Progressive failure in a model heterogeneous medium, J. Eng. Mech. Div. ASCE, 103, 365–376.
  • 12. Chen J., Yuan H., Kalkhof D. (2001), A nonlocal damage model for elastoplastic materials based on gradient plasticity theory, Report No. 01–13, Paul Scherrer Institut, 1–130.
  • 13. D’Addetta G. A., Kun F., Ramm E. (2002), In the application of a discrete model to the fracture process of cohesive granular materials, Granular Matter, 4, 77–90.
  • 14. Donze F. V., Magnier S. A., Daudeville L., Mariotti C., Davenne L. (1999), Numerical study of compressive behaviour of concrete at high strain rates, Journal Engineering Mechanics, 1154–1163.
  • 15. Dragon A., Mróz, Z. (1979), A continuum model for plastic-brittle behaviour of rock and concrete, Int. Journ. Eng. Science, 17, 121–137.
  • 16. Herrmann H. J., Hansen A., Roux S. (1989), Fracture of disordered elastic lattices in two dimensions, Physical Rev. B, 39, 637–647.
  • 17. Ibrahimbegovic A.,Markovic D., Gatuing F. (2003), Constitutive model of coupled damage-plasticity and its finite element implementatation, Eur. J. Finite Elem., 12, 4, 381–405.
  • 18. Klisinski M., Mróz Z. (1988), Description of Anelastic Deformations and Damage for Concrete, Monography, 193, Technical University of Poznan (in Polish).
  • 19. Kozicki J., Tejchman J. (2003), Discrete methods to describe the behaviour of quasi-brittle and granular materials, Electronic Proceedings of 16thEngineering Mechanics Conference ASCE, University of Washington, Seattle, USA, 16.07–18.07.2003, 1–10.
  • 20. Kozicki J., Tejchman J. (2005), Simulations of fracture in concrete elements using a discrete lattice model, Proc. Int. Conf. Computer Methods in Mechanics CMM.
  • 21. Kozicki J., Tejchman J. (2006), Modelling of fracture process in brittle materials using a lattice model, [in:] Computational Modelling of Concrete Structures, Euro-C 2006, (eds. G. Meschke, R. de Borst, H. Mang, N. Bicanic), Taylor and Francis 2006, 301–307.
  • 22. Kompfner T. A. (1983), Ein Finites Elementmodell f¨ur die Geometrisch und Physikalisch Nichtlineare Berechnung von Stahlbetonschalen, PhD thesis, Stuttgart University.
  • 23. Lilliu G., van Mier J. G. M. (2003), 3D lattice type fracture model for concrete, Engineering Fracture Mechanics, 70, 927–941.
  • 24. Liu T. C. Y., Nilson A. H., Slate F. O. (1977), Biaxial stress-strain relationships for concrete, J. Engng. Mech. Div. ASCE, 103, 423–439.
  • 25. Menetrey Ph., Willam K. J. (1995), Triaxial failure criterion for concrete and its generalization, ACI Structural Journal, 311–318.
  • 26. van Mier J. G. M., Schlangen E., Vervuurt A., (1995), Lattice type fracture models for concrete, [in:] Continuum Models for Materials with Microstructure, H.-B. M¨uhlhaus, ed., John Wiley & Sons, 341–377.
  • 27. van Mier J. G. M., van Vliet, M. R. A. (2003), Influence of microstructure of concrete on size/scale effects in tensile fracture, Engineering Fracture Mechanics, 70, 2281–2396.
  • 28. Mróz Z. (1972), Mathematical Models of Inelastic Concrete Behaviour, University Waterlo Press, 47–72.
  • 29. Mühlhaus H.-B., Aifantis E. C. (1991), A variational principle for gradient plasticity, Int. J. Solids Structures, 28, 845–858.
  • 30. Nooru-Mohamed M. B. (1992), Mixed-Mode Fracture of Concrete, PhD thesis, University of Delft.
  • 31. Palaniswamy R., Shah S. P. (1974), Fracture and stress-strain relationship of concrete under triaxial compression, J. Struct. Div. ASCE, 100, 901–916.
  • 32. Pamin J. (2004), Gradient-Enhanced Continuum Models: Formulation, Discretization and Applications, Habilitation, Monography, Cracow University of Technology, Cracow.
  • 33. Pamin J., de Borst R. (1999), Stiffness degradation in gradient-dependent coupled damage-plasticity, Arch. Mech., 51, 3–4, 419–446.
  • 34. Peerlings R. H. J., de Borst R., Brekelmans W. A. M., Geers M. G. D. (1998), Gradient enhanced damage modelling of concrete fracture, Mech. Cohesion.-Friction. Materials, 3, 323–342.
  • 35. Pietruszczak S., Jiang, J., Mirza F. A. (1988), An elastoplastic constitutve model for concrete, Int. J. Solids Structures, 24, 7, 705–722.
  • 36. Pijaudier-Cabot G., Bazant Z. P. (1987), Nonlocal damage theory, ASCE J. Eng. Mech., 113, 1512–1533.
  • 37. di Prisco M., Mazars J. (1996), Crush-crack – a non-local damage model for concrete, Mechanics of Cohesive-Frictional Materials, 1, 321–347.
  • 38. Schlangen E., Garboczi E. J. (1997), Fracture simulations of concrete using lattice models: computational aspects, Engineering Fracture Mechanics, 57, 319–332.
  • 39. Sluys L. J. (1992),Wave Propagation, Localisation and Dispersion in Softening Solids, Dissertation, Delft University of Technology, Delft.
  • 40. Sluys L. J., de Borst R. (1994), Dispersive properties of gradient and rate-dependent media,Mech. Mater., 183, 131–149.
  • 41. Vervuurt A., van Mier J. G. M., Schlangen E. (1994), Lattice model for analyzing steel-concrete interactions, [in:] Computer Methods and Advances in Geomechanics, Siriwardane and Zaman, eds., Balkema, Rotterdam, 713–718.
  • 42. Vidya Sagar R. (2004), Size effect in tensile fracture of concrete – a study based on lattice model applied to CT-specimen, CD-ROM, Proc. 21th Intern. Congress on Theoretical and Applied Mechanics ICTAM04, Warsaw, 1–2.
  • 43. Zbib H. M., Aifantis C. E. (1989), A gradient dependent flow theory of plasticity: application to metal and soil instabilities, Appl. Mech. Reviews, 42(11), 295–304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0037-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.