PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Loads Exerted on a Cylindrical Structure by Floating Ice Modelled as a Viscous-Plastic Material

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the problem of interaction between a coherent floating ice field and a fixed, rigid, vertically-walled circular cylinder is investigated. The ice cover, of horizontal dimensions significantly larger than the characteristic size of the structure, is assumed to be driven against the cylinder by wind drag forces. The ice is treated as a viscous-plastic material, in which the permissible stress states in the horizontal plane are bound by an elliptic yield curve. By using an associated flow rule, a constitutive law, involving two parameters defining the ice strength in compression and much smaller strength in extension, is derived in order to describe the behaviour of the material. The law predicts distinct responses during yield (occurring at high strain-rates) and during the flow when the yield condition does not apply (at lower strain-rates). The results of numerical calculations performed by a finite difference method illustrate, for chosen ice rheological parameters, the distribution of contact stresses at the ice - structure interface. Two forms of boundary conditions at the cylinder wall, free-slip and no-slip, are considered, and their effects on the horizontal loads sustained by the structure are examined. In addition, the results for the viscous-plastic rheology of ice are compared with those obtained on the assumption of a purely viscous behaviour of ice.
Słowa kluczowe
Twórcy
  • Institute of Hydro-Engineering of the Polish Academy of Sciences, Waryńskiego 17, 71-310 Szczecin, Poland, rstar@ibwpan.gda.pl
Bibliografia
  • 1. Chadwick P. (1999), Continuum Mechanics: Concise Theory and Problems , Dover, Mineola, New York, 2nd edn.
  • 2. Flato G. M. and Hibler W. D. (1992), Modeling pack ice as a cavitating fluid, J. Phys. Oceanogr., Vol. 22 (6), 626–651.
  • 3. Gray J. M. N. T., Killworth P. D. (1995), Stability of the viscous-plastic sea ice rheology, J. Phys. Oceanogr., Vol. 25, 971–978.
  • 4. Hibler W. D. (1977), A viscous sea ice law as a stochastic average of plasticity, J. Geophys. Res., Vol. 82 (27), 3932–3938.
  • 5. Hibler W. D. (1979), A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., Vol. 9 (4), 815–846.
  • 6. Hibler W. D., Ip C. F. (1995), The effect of sea ice rheology on Arctic buoy drift, ASME AMD, Vol. 207, 255–263.
  • 7. Hunke E. C., Dukowicz J. K. (1997), An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., Vol. 27, 1849–1867.
  • 8. Ip C. F., HiblerW. D., Flato G.M. (1991), On the effect of rheology on seasonal sea-ice simulations, Ann. Glaciol., Vol. 15, 17–25.
  • 9. Morland L. W., Staroszczyk R. (1998), A material coordinate treatment of the sea-ice dynamics equations, Proc. R. Soc. Lond., Vol. A 454, 2819–2857.
  • 10. Pritchard R. S. (1975), An elastic-plastic constitutive law for sea ice, J. Appl. Mech., Ser. E , Vol. 42 (2), 379–384.
  • 11. Rothrock D. A. (1975), The energetics of the plastic deformation of pack ice by ridging, J. Geophys. Res., Vol. 80 (33), 4514–4519.
  • 12. Sanderson T. J. O. (1988), Ice Mechanics. Risks to Offshore Structures , Graham and Trotman, London.
  • 13. Schulkes R. M. S. M., Morland L. W., Staroszczyk R. (1998), A finite-element treatment of sea ice dynamics for different ice rheologies, Int. J. Numer. Anal. Meth. Geomech., Vol. 22 (3), 153–174.
  • 14. Sjölind S. G. (1985), Viscoelastic buckling analysis of floating ice sheets, Cold Reg. Sci. Technol., Vol. 11 (3), 241–246.
  • 15. Staroszczyk R. (2005), Loads exerted by floating ice on a cylindrical structure, Arch. Hydroeng. Environ. Mech., Vol. 52 (1), 39–58.
  • 16. Tremblay L. B. (1999), A comparison study between two visco-plastic sea-ice models, [in:]Advances in Cold-Region Thermal Engineering and Sciences (eds. K. Hutter, Y. Wang and H. Beer), Springer, Berlin, 333–352.
  • 17. Tremblay L. B.,Mysak L. A. (1997),Modeling sea ice as a granular material, including the dilatancy effect, J. Phys. Oceanogr., Vol. 27, 2342–2360.
  • 18. Wang Y. S. and Ralston T. D. (1983), Elastic-plastic stress and strain distributions in an ice sheet moving against a circular structure, Proc. Seventh International Conf. on Port and Ocean Engineering under Arctic Conditions, Helsinki 1983 , 940–951.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0037-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.