PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

State-of-the-art in modelling of foraminiferal shells : searching for an emergent model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
5th Micropalaeontological Workshop MIKRO-2005 (8-10.06.2005, Szymbark, Poland)
Języki publikacji
EN
Abstrakty
EN
Modelling of foraminiferal tests (shells) started from the fixed-reference models, which used fixed points or axes as coordinate systems. Simulated shells are limited to simple planispiral, trochospiral or uniserial shell patterns, stable throughout ontogeny. On the other hand, various groups of foraminifera change chamber arrangements during their growth. Modelling of more complex forms, with changing chamber arrangement patterns, requires apertures, which are essential for morphogenesis of foraminifera. The moving reference model has solved this requirement, including apertures as reference points. This approach gives morphogenetic priority to apertures and produces more realistic simulations. Nevertheless, these models are still not "deep" enough to reflect the complexity of foraminiferal shells. It is proposed to focus on morphogenesis of real foraminifera and go deeper into the processes responsible for chamber formation. Earlier studies have shown that the cytoskeleton plays a major role in shaping the chambers. A new emergent model should introduce intracellular dynamics during the chamber formation. Internal processes should rather mimic physical interactions and biochemical reactions than geometric transformations. The foraminiferal morpho- genesis ought to emerge spontaneously from simple rules and parameters, instead of being predefined in the form of geometric figures and their transformations. The Diffusion Limited Aggregation (DLA) model, presented here, tests such a new emergent approach.
Rocznik
Tom
Strony
143--158
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Geological Sciences, Research Center in Kraków Poland
autor
  • Institute of Computer Sciences, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute of Computer Sciences, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1]. Ackerly, S. C., 1989. Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology, 15: 147-164.
  • [2]. Berger, W. H., 1969. Planktonic foraminifera: basic morphology and ecologic implications. Journal of Paleontology, 6: 1369-1383.
  • [3]. Berthold, W. U. & Spindler, M., 1978. Cytological and ecological aspects of morphogenesis in recent and fossil protistan skeletons. Biomineralisation and morphogenesis in benthic Foraminifera. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 157 (1-2): 85-90.
  • [4]. Brasier, M. D., 1980. Microfossils. Allen & Unwin, London: 1-304.
  • [5]. Brasier, M. D., 1982. Foraminiferid architectural history; a review using the MinLOC and PI methods. Journal of Micropalaeontology, 1: 95-105.
  • [6]. De Renzi, M., 1988. Shell coiling in some larger foraminifera: general comments and problems, Paleobiology, 14: 387-400.
  • [7]. De Renzi, M., 1995. Theoretical morphology of logistic coiling exemplified by tests of genus Alveolina (larger foraminifera). Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 195: 241-251.
  • [8]. Fedkiw, R., Stam, J. & Jensen, H. W., 2001. Visual Simulation of Smoke. Proceedings of SIGGRAPH 200I, ACM Press / ACM SIGGRAPH.
  • [9]. Grell, K. G., 1978. Protozoology. Springer-Verlag. New York: 1-554.
  • [10]. Hammer, Ø., 1998. Regulation of astogeny in halysitid tabulates. Acta Palaeontologica Polonica, 43: 635-651.
  • [11]. Hemleben C., 1969. Zur morphogenese planktonischer Foraminiferen. Zitteliana, 1: 91-133.
  • [12]. Hemleben, C., Spindler, M. & Anderson, O. R., 1989. Modern planktonic foraminifera. Springer-Verlag, New York.
  • [13]. Hohenegger, J., 1999. Larger foraminifera-microscopical greenhouses indicating shallow-water tropical and subtropical environments in the present and past. Kagoshima University Research Center for the Pacific Islands, Occasional Papers, 32: 19-45.
  • [14]. Hottinger, L., 1978. Comparative anatomy of elementary shell structures in selected larger Foraminifera. In: Hedley, R. H. & Adams, C. G. (eds), Foraminifera. Volume 3. Academic Press, London: 203-266.
  • [15]. Hottinger, L., 1986. Construction, structure, and function of foraminiferal shells. In: Leadbeater, B. S. C. & Riding, R. (eds), Biomineralization in lower plants and animals. The Systematics Association, Clarendon Press, Oxford, Special Volume 30: 222-235.
  • [16]. Hottinger, L., 2000. Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. Micropaleontology, 46, supplement no. 1: 57-86.
  • [17]. Kaandorp, J. A., 1994. A formal description of radiate accretive growth. Journal of Theoretical Biology, 166: 149-161.
  • [18]. Kaandorp, J. A., Lowe, C. P., Frenkel, D., Sloot, P. M. A., 1996. Effect of nutrient diffusion and flow on coral morphology. Physical Review Letters, 77: 2328-2331.
  • [19]. Kaandorp, J. & Kuebler, J. E., 2001. Algorithmic beauty of seaweeds, sponges and corals. Springer-Verlag, Heidelberg: 1-193.
  • [20]. Lindenmayer, A., 1968. Mathematical models for cellular interactions in development, I&II. Journal of Theoretical Biology, 18: 280-315.
  • [21]. Lipps, J. H., 1993. Fossil Prokaryotes and Protists. Blackwell, Boston: 1-344.
  • [22]. Łabaj P., Topa, P., Tyszka, J. & Alda, W., 2003. 2D and 3D numerical models of the growth of foraminiferal shells. Lecture Notes in Computer Science, 2657: 669-678.
  • [23]. Maly, I. V. & Borisy, G. G., 2002. Self-organization of treadmilling microtubules into a polar array. Trends in Cell Biology, 12 (10): 462-465.
  • [24]. Masek, J. G. & Turcotte, D. L., 1993. A diffusion-limited aggregation model for the evolution of drainage networks. Earth and Planetary Science Letters, 119, 379-386.
  • [25]. McGhee, Jr., G. R., 1999. Theoretical Morphology. The Concept and its Application. Perspectives in Paleobiology and Earth History, Columbia University Press, New York: 1-316.
  • [26]. Nédélec, F. J., Surrey, T., Maggs, A. C. & Leibler, S., 1997. Self-organization of microtubules and motors. Nature, 389: 305-308.
  • [27]. Nédélec, F. J., Surrey, T. & Karsenti, E., 2003. Self-organisation and forces in the microtubule cytoskeleton. Current Opinion in Cell Biology, 15: 118-124.
  • [28]. Niemeyer, L., Pietronero, L. & Wiesmann, H. J., 1984. Fractal dimension of dielectric breakdown. Physical Review Letters, 52: 1033-1036.
  • [29]. Nittman, J. & Stanley, H. E., 1986. Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature, 321 (12): 663-668.
  • [30]. Okamoto, T., 1988. Analysis of heteromorphy ammonoids by differential geometry. Palaeontology, 31: 35-52.
  • [31]. Parkinson, J, Brechet, Y. & Gordon, R., 1999. Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochimica et Biophysica Acta, 1452(1): 89-102.
  • [32]. Prusinkiewicz, P. & Lindenmayer, A., 1990. The Algorithmic Beauty of Plants. Springer-Verlag, New York: 1-228.
  • [33]. Raup, D. M., 1966. Geometric analysis of shell coiling: General problems. Journal of Paleontology, 40: 1178-1190.
  • [34]. Raup, D. M. & Michelson, A., 1965. Theoretical morphology of the coiled shell. Science, 147: 1294-1295.
  • [35]. Saczka, K., 2004. Implementation of the integrated environment modelling foraminiferal growth (in Polish). Unpublished M.Sc. Thesis, AGH University of Science and Technology, #45 862, 170 pp.
  • [36]. Scott, G. H., 1974. Biometry of the foraminiferal shell. In: Hedley, R. H. & Adams, C. G. (eds), Foraminifera. Volume 1. Academic Press, London: 55-151.
  • [37]. Seilacher, A., 1991. Self-organizing mechanisms in morphogenesis and evolution. In: Schmidt- Kittler, N.& Vogel, K. (eds), Constructional morphology and evolution. Springer-Verlag, Berlin: 251-271.
  • [38]. Signes, M., Bijma, J., Hemleben, C. & Ott, R., 1993. A model for planktic foraminiferal shell growth. Paleobiology, 19: 71-91.
  • [39]. Spindler, M. & Röttger, R., 1973. Der Kammerbauvorgang der Grossforaminifere Heterostegina depressa (Nummulitidae). Marine Biology, 18: 146-159.
  • [40]. Thomson, D’A. W., 1919. On Growth and Form. The Complete Revised Edition, 1992, Dover Publications Inc., New York: 1-1116.
  • [41]. Topa P. & Dzwinel, W. 2004. Consuming environment with transportation network modelled using graph of cellular automata. Lecture Notes in Computer Science, 3019: 513-520.
  • [42]. Topa, P. & Paszkowski, M., 2002. Anastomosing transportation networks. Lecture Notes in Computer Science, 2328: 904-912.
  • [43]. Topa, P. & Tyszka, J., 2002. Local minimization paradigm in numerical modelling of foraminiferal shells. Lecture Notes in Computer Science, 2329: 97-106.
  • [44]. Tyszka, J., Topa, P., Łabaj, P. & Alda, W., 2004. Theoretical morphology of foraminiferal shells: proposal of a new modeling method (in Polish with English Summary). Przegląd Geologiczny, Warszawa, 52 (1): 80-83.
  • [45]. Tyszka, J. & Topa, P., in press, 2005. A new approach to modeling of foraminiferal shells. Paleobiology, 31 (3): 526-541.
  • [46]. Webb, L. P. & Swan, A. R. C., 1996. Estimation of parameters of foraminiferal test geometry by image analysis. Paleontology, 39: 471-475.
  • [47]. Witten, T. & Sander, L., 1981. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters, 47: 1400-1403.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0036-0087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.