PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pyritization of microfossils: crinoid remains from the Middle Jurassic of Ogrodzieniec (Kraków-Częstochowa Upland, Poland)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
5th Micropalaeontological Workshop MIKRO-2005 (8-10.06.2005, Szymbark, Poland)
Języki publikacji
EN
Abstrakty
EN
Pyritized crinoid skeletal elements have been found in the so-called "ore-bearing clays" of the Middle Jurassic exposed in Ogrodzieniec (Kraków-Częstochowa Upland, Poland). Their assem- blage consists of columnals, cirrals and brachials; calyx plates have not been found. Ossicles occur both as unpyritized and pyritized. Three main types of pyritization have been distinguished in investigated material: (a) original calcitic skeleton is not replaced by pyrite but its void spaces are infilled with pyrite; (b) calcitic skeleton is replaced by pyrite, with or without void infilling; (c) pyritization overwhelms the primary morphology of the ossicle. The first two types predominate in the studied material. The types of pyritization have been explained by several subsequent stages of this process. The main stage of crinoid pyritization happened probably in the sediment during early diagenesis and was limited to microenvironments of fossils. Different morphological forms of pyrite registered in the same ossicles (euhedra, framboids and massive pyrite, can be explained by different position and time of the fossil pyritization, the type and location of organic matter, porosity, several stages of pyritization, "openness" of skeleton, different assemblages of bacteria, and probably many other factors.
Rocznik
Tom
Strony
37--52
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków
Bibliografia
  • [1]. Allison, P. A., 1988. Konservat-Lagerstaetten: Cause and classification. Paleobiology, 14: 331-344.
  • [2]. Bąk, M. & Sawłowicz, Z., 2000. Pyrisized radio Sarians from the mid-Cretaceous deposits of the Pieniny Klippen Belt - a model of pyritization in an anoxic environment. Geologica Carpathica, 51: 2, 91-99.
  • [3]. Berner, R. A., 1969. Migration of iron and sulphur within anaerobic sediments during early diagenesis. American Journal of Science, 267: 19-42.
  • [4]. Berner, R. A., 1980. Early Diagenesis: A Theoretical approach. Princeton University Press: 1-241.
  • [5]. Berner, R. A. & Raiswel, R., 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285: 710-724.
  • [6]. Bielecka, W., Styk, O., Pazdro, O. & Kopik, J., 1980. Geology of Poland - Atlas of guide and characteristic fossils. Mesozoic. Jurassic, Part 2b (in Polish). Państwowy Instytut Geologiczny.
  • [7]. Brett, C. E, Baird, R. F., 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios, 1: 207-227.
  • [8]. Briggs, D. E. G., Bottrell, S. H. & Raiswell, R., 1991. Pyritization of soft-bodied fossils: Beecher’s Trilobite Bed, Upper Ordovician, New York State. Geology, 19: 1221-1224.
  • [9]. Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatwield, D. & Bartela C., 1996. Controls on the pyritization of exeptionally preserved fossils: an analysis of the Lower Devonian Hunstruck slate of Germany. American Journal of Science, 296: 633-663.
  • [10]. Butler, I. B., Rickard, D. & Oldroyd, A., 1999. Formation of the thiospinel, greigite, through the oxidation of iron (II) monosulfide in the presence of aldehydes. In: Ninth Ann. V.M. Goldschmidt Conf., p. 46. LPI Contr. No. 971, Houston.
  • [11]. Canfield, D. E. & Raiswell, R., 1991. Pyrite formation and fossil preservation. In: Allison, P. A. & Briggs, D. E. G. (eds), Taphonomy: Releasing the Data Locked in the Fossil Record. Topics Geo biology, 9: 337-387.
  • [12]. Curtis, C. D., 1980. Diagenetic alteration in black shales. Journal of Geological Society, London, 137: 189-194.
  • [13]. Dadlez, R., Marek, S. & Pokorski, J., 2000. Geological map of Poland without Cenozoic deposits. Scale 1:1,000,000, Państwowy Instytut Geologiczny, Warszawa.
  • [14]. Dill, H. G, Eberhard, E. & Hartman, B., 1997. Use of variations in unite cell length, reflectance and hardness for determining the origin of the Fe disulphides in sedimentary rocks. Sedimentary Geology, 107: 281-301.
  • [15]. Farina, M., Esquivel, D. M. S. & Lins de Barros, H. G. P., 1990. Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature, 34: 256-258.
  • [16]. Ferris, F. G., Fyfe, W. S. & Beveridge, T. T., 1987. Bacteria as nucleation sites for authigenic minerals in metal-contaminated lake sediments. Chemical Geology, 63: 225-232.
  • [17]. Fisher, I. S. J. & Hudson, J. D., 1985. Pyrite geochemistry and fossil preservation in shales. In: Whittington H. B. & Morris S. C. (eds), Extraordinary Fossil Biotas: Their Ecological and Evolutionary Significance. Philosophical Transactions of Royal Society. London B, 311: 167- 169.
  • [18]. Fisher, R., 1986. Pyrite replacement of mollusc shells from the Lower Oxford Clay (Jurassic) of England. Sedimentology, 33: 575-585.
  • [19]. Franke, W., 1987. Tracht und Habitus synthetischer Hydrothermalminerale. Fortschritte der Minera- logie, 65: 50-51.
  • [20]. Garcia-Guinea, J., Martinez-Fry’as, J. & Harffy, M., 1998. Cell-hosted pyrite framboids in fossil woods. Naturwissenschaften, 85: 78-81.
  • [21]. Gaspard, D. & Roux, M., 1974. Quelques aspects de la fossilization des tests chez les brachiopods et les crinoids. Relation entre la presénce de matičre organique et le développement d’agrégats ferrifčres. Geobios, 7 (2): 81-89.
  • [22]. Gedl, P., Kaim, A., Boczarowski, A., Kędzierski, M., Smoleń, J., Szczepanik, P., Witkowska, M. & Ziaja, J., 2003. Reconstruction of the palaeoenvironment of deposition of the Middle Jurassic ore-bearing clays from Gnaszyn (Częstochowa) - preliminary results (in Polish). Tomy Jurajskie, 1: 19-27.
  • [23]. Goldhaber, M. B. & Kaplan, I. R., 1974. The sulfur cycle. In: Goldhaber E. D. (ed.) The Sea, 5: 569-655, Wiley-Interscience.
  • [24]. Hudson, J. F., 1982. Pyrite in ammonite-bearing shales from the Jurassic of England and Germany. Sedimentology, 29: 639-667.
  • [25]. Jensen, M. & Thomsen, E., 1987. Ultrastructure, dissolution and “pyritization” of Late Quarternary and Recent echinoderm. Bulletin of Geological Society of Denmark, 36: 275-287.
  • [26]. Kaplan, I. R., Emery, K. O. & Rittenberg, S. C., 1963. The distribution and isotopic abundance of sulfur in recent marine sediments off southern California. Geochimica et Cosmochimica Acta, 27: 297-231.
  • [27]. Kopik, J., 1967. The Middle and Upper Jurassic of the Częstochowa-Zawiercie Sedimentary Basin. Biuletyn Instytutu Geologicznego, 211: 93-181.
  • [28]. Kopik, J., 1998. The Lower and Middle Jurassic of the north-east border of the Upper Silesian Coal Basin (in Polish). Biuletyn Państwowego Instytutu Geologicznego, 378: 67-129.
  • [29]. Macurda, D. B. Jr., Meyer, D. L. & Roux, M., 1978. The crinoid stereom. In: R. C. Moore and Teichert (eds), Treatise on Invertebrate Palaeontology. Part T. Echinodermata. Crinoidea 1. T217-T242. Geological Society of America. Boulder, Colorado.
  • [30]. Majewski, W., 2000. Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geologica Polonica, 50, 4: 431-439.
  • [31]. Mann, S., Sparks N.H.C. & Board R.G., 1990. Magnetotactic Bacteria: microbiology, biomineralization, palaeomagnetism and biotechnology. Advances in Microbial Physiology, 31: 125-181.
  • [32]. Matyja, B. A. & Wierzbowski, A., 2000. Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wieluń, Central Poland. Acta Geologica Polonica, 50, 2: 191-209.
  • [33]. Matyja, B. A. & Wierzbowski, A., 2003. Ammonite biostratigraphy of the Czestochowa ore-bearing clay formation (uppermost Bathonian-Upper Bajocian) from the outcrops in Czestochowa (in Polish). Tomy Jurajskie, 1: 3-11.
  • [34]. McNeil, D. H., 1990. Stratigraphy and paleoecology of the Eocene Stellarima Asemblage Zone (piryte diatom steinkerns) in the Beaufort - Mackenzie Batin, Arctic Canada. Bulletin of Canadian Geology, 38, 1: 17-27.
  • [35]. Pazdro, O., 1967. The Bathonian Microfauna from the Vicinity of Ogrodzieniec (in Polish with English abstract). Biuletyn Instytutu Geologicznego, 211 (1): 146-160.
  • [36]. Petr, V., Prokop, R. J., Mihaljevič, M. & Šebek, O., 1997. Chemical composition skeletal remains (Echinodermata) in weathered limestones of the Bohemian Lower Devonian (Barrandian area). Journal of the Czech Geological Society, 42 (1-2): 41-58.
  • [37]. Raiswell, R., Whaler, K., Dean, S., Coleman, M. L. & Briggs, D. E. G., 1993. A simple three- dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. Marine Geology, 113: 87-100.
  • [38]. Raiswell, R., 1997. A geochemical framework for the application of stable sulfur isotopes to fossil pyritization. Journal of Geological Society of London, 154: 343-356.
  • [39]. Rickard D. T, Schoonen N. A. A. & Luther G. W. III, 1995. Chemistry of iron sulfides in sedimentary environments. In: Vairavamurthy, M. A. & Schoonen, M. A. A. (eds) Geochemical transformations of sedimentary sulfur. American Chemical Society Symposium Series, 612: 168-193.
  • [40]. Różycki, S., 1953. The Upper Dogger and Malm of the Krakow-Czestochowa region. Prace Instytutu Geologicznego. 17: 1-412 (in Polish).
  • [41]. Schoonen, M. A. A. & Barnes, H. L. 1991. Reactions forming pyrite and marcasite from solution. II. Via FeS precursor below 100°C. Geochimica et Cosmochimica Acta, 55: 1505-1514.
  • [42]. Sweeney, R. E. & Kaplan, I. R., 1973. Pyrite framboid formation: laboratory synthesis and marine sediments. Economic Geology, 68: 618-634.
  • [43]. Szczepanik, P., 2003. Pyritization of organic remains in the Middle Jurassitic sediments from “Ogrodzieniec” brick-works (in Polish). Tomy Jurajskie, 1: 117-118.
  • [44]. Szczepanik, P., 2004. Pyritization of the microfossils in the Middle Jurassic clays from Gnaszyn (Częstochowa, Polska). In: Abstracts, 5th Czech-Slovak-Polish palaeontological conference, Bratislava, 101-102.
  • [45]. Szczepanik P., Sawłowicz Z. & Bąk M., 2004. Pyrite framboids in pyritized radiolarian skeletons (Mid-Cretaceous of the Pieniny Klippen Belt, Western Carpatians, Poland). Annales Societatis Geologorum Poloniae, 74, 1: 35-41.
  • [46]. Thomsen, E. & Vorren, T. O., 1984. Pyritization of tubes and burrows from Late Pleistocene continental shelf sediments of North Norway. Sedimentology, 31: 481-492.
  • [47]. Weber, J. N., 1969. The incorporation of magnesium into the skeletal calcites of echinoderms. American Journal of Science, 267, 5: 537-566.
  • [48]. Znosko, J., 1954. Stratigraphy of the ore-bearing clays based on drill-cores (in Polish). In: Geological researches of the ore-bearing clays of the Krakow-Wieluń region. Biuletyn Instytutu Geologicznego, 1: 183-281.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0036-0081
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.