PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformation measurements in granular bodies using a Particle Image Velocimetry technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of strain measurements in cohesionless sand in two different boundary value problems, namely quasi-static pull-out test of a steel wall and confined granular flow in a rectangular model silo using a non-destructive method called Particle Image Velocimetry (PIV) which is a technique for measuring surface displacements from digital images. Advantages and disadvantages of the method are outlined.
Słowa kluczowe
Twórcy
autor
  • [Słomiński, C.] Karlsruhe University, Institute for Soil and Rock Mechanics, Karlsruhe, Germany, [Niedostatkiewicz, M., Tejchman, J. ] Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-952 Gdańs, tejchmk@pg.gda.pl
Bibliografia
  • 1. Adrian R. J. (1991), Particle imaging technique for experimental fluid mechanics, Ann. Rev. Fluid Mech., 23, 261–304.
  • 2. Baxter G. W., Behringer R. P. (1990), Pattern formation and time-dependence in flowing sand, [in:] Two Phase Flows and Waves, Springer Verlag, New York, 1–29.
  • 3. Bhandari A. R., Inoue J. (2005), Experimental study of strain rates effects on strain localization characteristics of soft rocks, Soils and Foundations, 45, 1, 125–140.
  • 4. Butterfield R., Harkness R. M., Andrawes K. Z. (1970), A stereo-photogrammetric technique for measuring displacement fields, Geotechnique, 20, 3, 308–314.
  • 5. DaVis PIV Manual (2002), La Vision.
  • 6. Desrues J. (1984), La Localization de la Deformation dans les Materiaux Granulaires, PhD thesis, USMG and INPG, Grenoble.
  • 7. Desrues J., Chambon R., Mokni M., Mazerolle F. (1996), Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, Geotechnique, 46, 3, 529–546.
  • 8. Desrues J., Viggiani G. (2004), Strain localization in sand: overview of the experiments in Grenoble using stereophotogrammetry, Int. J. Numer. Anal. Methods in Geomech., 28, 4, 279–324.
  • 9. Fischer R., Gondret P., Rabaud M., Courrech du Pont S., Perrin B. (2005), Velocity fields of intermittent granular avalanches, Proc. Int. Conf. Powders and Grains 2005 (eds.: R. Garcia-Rojo, H. J. Herrmann and S. McNamara), Taylor and Francis Group, London, 803–805.
  • 10. Gudehus G. (1986), Einige Beitr¨age der Bodenmechanik zur Entstehung und Auswirkung von Diskontinuit¨aten, Felsbau, 4, 190–195.
  • 11. Hutter K., Kirchner N. (2003), Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations, Springer, New York.
  • 12. James R. (1965), Stress and Strain Fields in Sand, PhD Thesis, University of Cambridge.
  • 13. Jaworski A., Dyakowski T. (2001), Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system, Measurement Science and Technology, 12, 1109–1119.
  • 14. Kohse W. C. (2003), Experimentell Untersuchung von Scherfugenmustern in Granulaten, Diplomarbeit, Institute for Soil and Rock Mechanics, University of Karlsruhe.
  • 15. Lueptov R. M., Akonur A., Shinbrot T. (2000), PIV for granular flows, Experiments in Fluids, 28, 183–186.
  • 16. Michalowski R. L. (1984), Flow of granular material through a plane hopper, Powder Technology, 39, 29–40.
  • 17. Michalowski R. L. (1990), Strain localization and periodic fluctuations in granular flow processes from hoppers, Geotechnique, 40, 3, 389–403.
  • 18. Mokni M. (1992), Relations entre Deformations en Masse et Deformations Localisees dans les Materiaux Granulaires, PhD thesis, University of Grenoble.
  • 19. Niedostatkiewicz M., Tejchman J. (2005), Measurements of changes of the bulk solid density during granular flow in silos, Powder Handling Processing, Vol. 17, 2, 76–83.
  • 20. N¨ubel K. (2002), Experimental and Numerical Investigation of Shear Localisation in Granular Materials, Publication Series of the Institute of Soil and Rock Mechanics, University of Karlsruhe, 62.
  • 21. RaffelM.,Willert C., Kompenhaus J. (1998), Particle Image Velocimetry, Springer, Berlin, Heidelberg.
  • 22. Rechenmacher A. L., Finno R. J. (2004), Digital image correlation to evaluate shear banding in dilative sands, Geotechnical Testing Journal, 27, 1, 13–22.
  • 23. Roscoe K. H., Arthur J. R. F., James R. G. (1963), The determination of strains in soils by an X-ray method, Civ. Eng. Public Works Rev., 58, 873–876, 1009–1012.
  • 24. Sielamowicz I., Kowalewski T. A., Błonski S. (2005), Application of digital particle image velocimetry in registrations of central and eccentric granular material flows, Proc. Int. Conf. Powder and Grains (eds. R. Garcia-Rojo, H. J. Herrmann, S. McNamara), 903–908.
  • 25. Sutton M. A., McNeill S. R., Helm J. D., Chao Y. J. (2000), Advances in two-dimensional and three-dimensional computer vision, Photemechanics, Topics in Applied Physics, 77, 323–372.
  • 26. Tan S., Fwa T. (1991), Influence of voids on density measurements of granular materials using gamma radiation techniques, Geotech. Test Journal, 14, 3, 257–265.
  • 27. Tejchman J. (1989), Scherzonenbildung und Verspannungseffekte in Granulaten unter Ber¨ucksichtigung von Korndrehungen, Publication Series of the Institute of Soil and Rock Mechanics, University of Karlsruhe, 117, 1–236.
  • 28. Tejchman J.,Wu W. (1995), Experimental and numerical study of sand-steel interfaces, Int. Journal of Numerical and Anal. Methods in Geomechanics, 19, 8, 513–537.
  • 29. Tejchman J. (1997), Modelling of Shear Localization and Autogeneous Dynamic Effects in Granular Bodies, Habilitation Monography, University of Karlsruhe, 140, 1–353.
  • 30. Tejchman J. (2002), Patterns of shear zones in granular bodies within a polar hypoplastic continuum, Acta Mechanica, 155, 1–2, 71–95.
  • 31. Tejchman J. (2004), Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements, Computers and Geotechnics, 31, 8, 595–611.
  • 32. Tejchman J. (2006), Effect of fluctuation of current void ratio on the shear zone formation in granular bodies within micro-polar hypoplasticity, Computers and Geotechnics (in press).
  • 33. White D. J., Take W. A., Bolton M. D. (2003), Soil deformation measurements using particle image velocimetry (PIV) and photogrammetry, Geotechnique, 53, 7, 619–631.
  • 34. Vacher P., Dumoulin S., Morestin F., Mguil-Touchai S. (1999), Bidimensional strain measurement using digital images, Proc. Inst. Mech. Eng., 213, 811–817, C.
  • 35. Vardoulakis I. (1977), Scherfugenbildung in Sandk¨orpern als Verzweigungsproblem, PhD thesis, Institute for Soil and Rock Mechanics, University of Karlsruhe, 70.
  • 36. Yoshida T., Tatsuoka F., Siddique M. (1994), Shear banding in sands observed in plane strain compression, [in:] Localisation and Bifurcation Theory for Soils and Rocks (eds.: R. Chambon, J. Desrues and I. Vardoulakis), Balkema, Rotterdam, 165–181.
  • 37. Zadroga B., Malesinski K. (2005), Novel measurement techniques for subsoil displacements in model tests of the foundation stability, Inzynieria Morska i Geotechnika, 3, 208–218 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0034-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.