PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comprehensive circumscribing of non-linearity cases of a water supply system with smooth flow control

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The descriptions found in the literature, of cases of even relatively strong non-linearity of the water supply systems, as well as their mathematical treatment, are rare and incomplete. They refer mainly to the non-linearity with respect to smooth flow control components (for instance, to the operation of pressure reducing valves (PRV), flow reducing valves (FRV) and pumps with motors equipped with smooth rotational speed control - variable frequency drives (VFD)). The article proposes a formally correct method of a comprehensive solution of the above non-linearity cases based on successive simulations with some dynamic analysis of the sensitivity of the system to the operation of the smooth control components mentioned. An appropriate algorithm controlling the effectiveness of the calculations secures correct description of the behaviour of the system for an arbitrary, in practice, method of control of flows, even if all the proposed smooth control methods are used simultaneously. The effects of the use of the solutions presented in mathematical modelling are illustrated by selected results of simulation carried out for an existing water supply system.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland, rorl@pg.gda.pl
Bibliografia
  • 1. ACEE (1991), Energy-Efficient Motor Systems: A Handbook on Technology, Program, and Policy Opportunities, Prepared for American Public Power Association by the American Council for an Energy-Efficient Economy, Washington, USA.
  • 2. Epp R., Fowler A. G. (1970), Efficient code for steady-state flows in networks, J. Hydr. Div., ASCE, 96(1), 43–56.
  • 3. EPANET Ver. 2.0., Build 2.00.08., Water Supply and Water Resour. Div., National Risk Mgmt. Res. Laboratory, U.S. Environmental Protection Agency, Cincinnati, USA
  • 4. Findeisen W. (1985), System Analysis – the Basics and Methodology, PWN, Warsaw, Poland (in Polish).
  • 5. Gofman E., Rodeh M. (1981), Loop equation with unknown pipe characteristics, J. Hydr. Div., ASCE, 107(9), 1047–1060.
  • 6. Jeppson R. W., Davis A. L. (1976), Pressure reducing valves in pipe network analysis, J. Hydr. Div., ASCE, 102(7), 987–1001.
  • 7. Lingireddy S., Wood D. J., Ormsbee L. E. (1992), Explicit calculation of pipe network parameters for time varying conditions, Proc., 1992 Comp. Conf., American Water Works Association, Denver, USA, 415–425.
  • 8. Lingireddy S., Wood D. J. (1995), Using variable speed pumps to reduce leakage and improve performance, [in:] Improving Efficiency and Reliability in Water Distribution Systems, E. Cabrera and A. F. Vela, eds., Vol. 14, Kluwer Academic Publishers, London, 415–425.
  • 9. Lingireddy S., Wood D. J. (1998), Improved operation of water distribution systems using variable-speed pumps, J. Energy Engrg., ASCE, 124(3), 90–103.
  • 10. Orłowski R. (1997), Mathematical Nodelling of Steady Flows in Water Supply Systems, Zeszyty Naukowe Politechniki Gdanskiej, seria: Budownictwo Wodne, Nr 42, Gdansk, Poland (In Polish).
  • 11. Orłowski R. (1999), Technical and economic aspects of smooth control of pumps working in water supply, sewage treatment, hot water and central heating systems, Gaz, Woda i Technika Sanitarna, PZITS, Poland, 12/99, 449–458 (in Polish).
  • 12. Orłowski R. (1999a), Hydraulic and economical analysis of pump station stepless control in outdoor and indoor water supply and sewage systems, Proc. Technologia i Automatyzacja Systemów Wodociagowych i Kanalizacyjnych TiASWiK’99, Gdansk, Poland, 25–38 (in Polish).
  • 13. Orłowski R. (2000), Modified pipe network model for incorporating peak demand requirements (discussion on Lingireddy S., Wood D. J., and Nelson A. (1998)), J. Water Resour. Plng. And Mgmt., ASCE, 126(1), 38–40.
  • 14. Orłowski R. (2002), Mathematical and numerical description of water supply system nonlinearities to pump stepless control, Proc. XXXI Seminarium Zastosowan Matematyki, Politechnika Wrocławska, Wrocław/Kobyla Góra, Poland, 23–38 (in Polish).
  • 15. Orłowski R. (2003), Technical and economic analysis of pump station stepless control in water supply and sewage systems, World Pumps, 447 (December 2003), 28–32.
  • 16. Rominski A. (1999), Computer Model of Flows in Water Supply System (for a Case of the System in Pruszcz Gdanski), Masters thesis, Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gdansk, Poland (in Polish).
  • 17. Siwon Z. (1998), Hydraulic analysis of Water Distribution Systems, Environment Protection Engineering, Department of Environmental Protection Engineering, Wrocław University of Technology, 24(3–4), 121–130.
  • 18. Ula S., Birnbaum L. E., Jordan D. (1991), Energy Efficient Drive Power: An Overview, University of Wyoming, Laramie, USA.
  • 19. Walski T. M. (1985), Analysis of Water Distribution Systems, Van Nostrand Reinhold Co. Inc., New York.
  • 20. Wood D. J. (1993), Hydraulic Analysis of Water Distribution Systems, Computational Mechanics Publications, Southampton.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0034-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.