PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigations of shear localization in granular bodies within an anisotropic micro-polar hypoplasticity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on the numerical analysis of the effect of texturial anisotropy on shear localization in cohesionless granular materials. For simulation of the mechanical behaviour of a granular material during a monotonous deformation path, a hypoplastic constitutive model was used. To take into account a characteristic length of micro-structure, the constitutive model was extended by micro-polar terms. To take into account texturial effects, the granular hardness was modified. The calculations were carried out with a sand specimen during plane strain compression under constant lateral pressure. A stochastic and uniform distribution of the initial void ratio in the granular specimen was assumed. In addition, shear localization for two different uniform initial void ratios was investigated.
Twórcy
autor
  • Faculty for Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-952 Gdańsk, tejchmk@pg.gda.pl
Bibliografia
  • Abelev A. V., Lade P. V. (2003), Effects of cross anisotropy on 3-dimensional behaviour of sand. II: Stress-strain behaviour and shear banding, J. Eng. Mech. ASCE, 129, 2, 167–174.
  • Aifantis E. C. (1984), On the microstructural origin of certain inelastic models, J. Eng. Mater. Technol., 106, 326–334.
  • Arthur J. R. F., Phillips A. B. (1975), Homogeneous and layered sand in triaxial compression, Geotechnique, 25, 4, 799–815.
  • Bauer E. (1996), Calibration of a comprehensive hypoplastic model for granular materials, Soils and Foundations, 36, 1, 13–26.
  • Bauer E., Huang W., Wu W. (2004), Investigations of shear banding in an anisotropic hypoplastic material, Int. J. Solids and Structures, 41, 5903–5919.
  • Boehler J. P., Sawczuk A. (1977), On yielding of oriented solids, Acta Mechanica, 27, 185–206.
  • de Borst R., Mühlhaus H.-B. (1992), Gradient dependent plasticity: formulation and algorithmic aspects, Int. J. Numer. Methods Engng., 35, 521–539.
  • de Borst R., Mühlhaus H.-B., Pamin J., Sluys L. (1992), Computational modelling of localization of deformation, Proc. of the 3rd Int. Conf. Comp. Plasticity, [in:] D. R. J. Owen, H. Onate, E. Hinton, eds., Swansea, Pineridge Press, 483–508.
  • Box G. E. P., Muller M. E. (1958), A note of the generation of random normal deviates, Annals. Math. Stat., V 29, 610–611.
  • Chambon R. (2001), Incremental behaviour of a simple deviatoric constitutive CLoE model, Bifurcation and Localisation Theory in Geomechanics (eds.: M¨uhlhaus H.-B. et al), Swets and Zeitlinger, Lisse, 21–28.
  • Groen A. E. (1997), Three-Dimensional Elasto-Plastic Analysis of Soils, PhD Thesis, Delft University.
  • Gudehus G. (1986), A comprehensive constitutive equation for granular materials, Soils and Foundations, 36, 1, 1–12.
  • Gudehus G. (1997), Attractors, percolation thresholds and phase limits of granular soils, Powder and Grains (eds.: Behringer and Jenkins), 169–183.
  • Gudehus G., Nübel K. (2004), Evolution of shear bands in sand, Geotechnique, 54, 3, 187–201.
  • Herle I., Gudehus G. (1999), Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies, Mechanics of Cohesive-Frictional Materials, 4, 5, 461–486.
  • Kanatani K. I. (1984), Distribution of directional data and fabric tensor, Int. J. Engng. Science, 22, 149–160.
  • Khidas Y., Jia X. (2005), AcousticMeasurements of Anisotropic Elasticity in Glass Beads Packings, [in:] Powders and Grains (eds.: Garcia-Rojo, Herrmann and McNamara), Taylor and Francis Group, London, 309–312.
  • Kolymbas D. (1977), A rate-dependent constitutive equation for soils, Mech. Res. Comm., 6, 367–372.
  • Lade P. V. (1977), Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces, Int. J. Solid Structures, 13, 1019–1035.
  • Lam W. K., Tatsuoka F. (1988), Effect of initial anisotropic fabric and on strength and deformation characteristics of sand, Soils and Foundations, 28, 1, 89–106.
  • Lanier J., Caillerie D., Chambon R. (2004), A general formulation of hypoplasticity, Int. J. Numer. Anal. Methods in Geomech., 28, 15, 1461–1478.
  • Larsson J., Larsson R. (2000), Finite-element analysis of localization of deformation and fluid pressure in elastoplastic porous medium, Int. J. Solids and Structures, 37, 7231–7257.
  • Lodygowski T., Perzyna P. (1997), Numerical modelling of localized fracture of inelastic solids in dynamic loading process, Int. J. Num. Meth. Eng., 40, 22, 4137–4158.
  • Loret B., Prevost J. H. (1990), Dynamic strain localisation in elasto-visco-plastic solids, Part 1. General formulation and one-dimensional examples, Comp. Appl. Mech. Eng., 83, 247–273.
  • Maier T. (2002), Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizit¨at, PhD Thesis, University of Dortmund.
  • Mühlhaus H.-B. (1990), Continuum models for layered and blocky rock, Comprehensive Rock Engineering ([in:] J. A. Hudson,Ch. Fairhurst, editors), 2, 209–231, Pergamon Press.
  • Niemunis A. (2003), Anisotropic effects in hypoplasticity, Proc. Int. Symp. on Deformation Characteristics of Geomaterials, Lyon, France, 1, 1211–1217.
  • Nübel K., Karcher C. (1998), FE simulations of granular material with a given frequency distribution of voids as initial condition, Granular Matter, 1, 3, 105–112.
  • Oda M., Nemat-Nasser, Konishi J. (1985), Stress induced anisotropy in granular masses, Soils and Foundations, 25, 3, 85–97.
  • Pamin J. (1994), Gradient-Dependent Plasticity in Numerical Simulation of Localisation Phenomena, PhD Thesis, Delft University.
  • Pena A. A., Herrmann H. J., Lizcano A., Alonso-Marroquin F. (2005), Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles, [in:] Powders and Grains (eds.: Garcia-Rojo, Herrmann and McNamara), Taylor and Francis Group, London, 697–700.
  • Pestana J. M., Whittle A. J. (1999), Formulation of a unified constitutive model for clays and sands, In. J. Num. Anal. Meth. Geomech., 23, 1215–1243.
  • Pijaudier-Cabot G., Bazant Z. P. (1987), Nonlocal damage theory, ASCE J. Eng. Mech., 113, 1512–1533.
  • Regueiro R. A., Borja R. I. (2001), Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity, Int. J. Solids and Structures, 38, 21, 3647–3672.
  • Shahinpoor M. (1981), Statistical mechanical considerations on storing bulk solids, Bulk Solid Handling, 1, 1, 31–36.
  • Sluys L. Y. (1992), Wave propagation, localisation and dispersion in softening solids, PhD Thesis, Delft University of Technology.
  • Tatsuoka F., Nakamura S., Huang C., Tani K. (1990), Strength anisotropy and shear band direction in plane strain tests of sand, Soils and Foundations, 30, 1, 35–54.
  • Tatsuoka F., Okahara M., Tanaka T., Tani K., Morimoto T., Siddiquee M. S. (1991), Progressive failure and particle size effect in bearing capacity of footing on sand, Proc. of the ASCE Geotechnical Engineering Congress, 27, 2, 788–802.
  • Tatsuoka F., Siddiquee M. S. A., Yoshida T., Park C. S., Kamegai Y., Goto S., Kohata Y. (1994), Testing Methods and Results of Element Tests and Testing Conditions of Plane Strain Model Bearing Capacity Tests using Air-Dried Dense Silver Leighton Buzzard Sand, Internal Report of the Tokyo University.
  • Tatsuoka F., Goto S., Tanaka T., Tani K., Kimura Y. (1997), Particle size effects on bearing capacity of footing on granular material, Deformation and Progressive Failure in Geomechanics (eds.: A. Asaoka, T. Adachi and F. Oka), Pergamon, 133–138.
  • Tejchman J., Herle I., Wehr J. (1999), FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localisation, Int. J. Num. Anal. Meth. Geomech., 23, 2045–2074.
  • Tejchman J., Gudehus G. (2001), Shearing of a narrow granular strip with polar quantities, J. Num. and Anal. Methods in Geomechanics, 25, 1–18.
  • Tejchman J. (2004), Influence of a characteristic length on shear zone thickness in hypoplasticity with different enhancements, Computers and Geotechnics, 31, 8, 595–611.
  • Tejchman J., Bauer E. (2005), FE-simulations of a direct and a true simple shear stress within a polar hypoplasticity, Computers and Geotechnics, 21, 1, 1–16.
  • Tejchman J., Bauer E., Wu W. (2006), Effect of texturial anisotropy on shear localization in sand during plane strain compression (under preparation).
  • Tejchman J., Niemunis A. (2005), FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material, Granular Matter (submitted for publication).
  • Walukiewicz H., Bielewicz E., Gorski J. (1997), Simulation of nonhomegeneous random fields for structural applications, Computers and Structures, 64, 1–4, 491–498.
  • Vardoulakis I. (1980), Shear band inclination and shear modulus in biaxial tests, Int. J. Num. Anal. Meth. Geomech., 4, 103–119.
  • Vermeer P. (1982), A five-constant model unifying well-established concepts, Proc. Int. Workshop on Constitutive Relations for Soils (eds. G. Gudehus, F. Darve, I. Vardoulakis), Balkema, 175–197.
  • Yamada Y., Ishihara K. (1979), Anisotropic deformation characteristics of sand under three dimensional stress conditions, Soils and Foundations, 19, 2, 79–94.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0034-0068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.