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Abstract

The paper focuses on the numerical analysis of the effect of texturial anisotropy on
shear localization in cohesionless granular materials. For simulation of the mech-
anical behavior of a granular material during a monotonous deformation path, a
hypoplastic constitutive model was used. To take into account a characteristic length
of micro-structure, the constitutive model was extended by micro-polar terms. To take
into account texturial effects, the granular hardness was modified. The calculations
were carried out with a sand specimen during plane strain compression under con-
stant lateral pressure. A stochastic and uniform distribution of the initial void ratio in
the granular specimen was assumed. In addition, shear localization for two different
uniform initial void ratios was investigated.
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1. Introduction

Granular materials build discrete systems composed of grains of different shape,
size, roundness and roughness. Thus, their behaviour is strongly anisotropic and
influenced by the orientation of grains (fabric) with respect to the loading direction
(Boehler and Sawczuk 1977, Kanatani 1984, Oda et al 1985, Khidas and Jia 2005).
This inherent anisotropy due to fabric (texture) is called a transverse isotropy since
the material has a rotational symmetry with respect to one of the co-ordinates’
axes. The plane perpendicular to the orientation direction is called bedding plane
and is a plane of isotropy.

The laboratory experiments show that the orientation of the bedding plane rel-
ative to the principal stress directions has a pronounced effect on the stress-strain
behaviour (Arthur and Phillips 1975, Lam and Tatsuoka 1988, Tatsuoka et al
1990, 1991, 1994, 1997, Abelev and Lade 2003). The material stiffness, peak fric-
tion angle and average volume change are higher and strain corresponding to the
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peak friction angle is smaller for loading perpendicular to the bedding plane than
for loading parallel to it. The inclination of the shear zone with respect to the bot-
tom becomes smaller (Abelev and Lade 2003). For large monotonic shearing, the
stress ratio approaches a stationary value (Yamada and Ishihara 1979, Tatsuoka
et al 1994), i.e. anisotropy vanishes at critical state due to a so-called SOM-effect
(swept out of memory effect) (Gudehus 1997). The DEM simulations (Pena et al
2005) confirm also this important property of granular bodies.

For describing the behaviour of granular materials within continuum mech-
anics, mainly elasto-plastic constitutive (Lade 1977, Vermeer 1982, Pestana and
Whittle 1999) and hypoplastic constitutive models (Kolymbas 1977, Gudehus 1996,
Bauer 1996, Chambon 2001, Lanier et al 2004) are applied. To describe the shear
zone formation (thickness, inclination and spacing), these approaches have to be
enriched by a characteristic length of microstructure by means of a micro-polar
(Mühlhaus 1990, Tejchman and Gudehus 2001, Maier 2002, Gudehus and Nübel
2004), non-local (Pijaudier-Cabot and Bazant 1987, Maier 2002, Tejchman 2004),
second-gradient theory (Aifantis 1984, de Borst and Mühlhaus 1992, Sluys 1992,
Pamin 1994) and viscosity (Loret and Prevost 1990, Sluys 1992, Lodygowski and
Perzyna 1997). Due to the presence of a characteristic length of micro-structure,
the approaches regularize the ill-posedness i.e. preserve the well-posedness of the
underlying incremental boundary value problem caused by strain-softening ma-
terial behaviour and localization formation (differential equations of motion do
not change their elliptic type during quasi-static calculations and hyperbolic type
during dynamic calculations) and prevent pathological discretization sensitivity
(de Borst et al 1992). Thus, objective and properly convergent numerical solu-
tions for localized deformation (mesh-insensitive load-displacement diagram and
mesh-insensitive deformation pattern) are achieved. Another numerical technique
which enables to remedy the drawbacks of standard FE-methods and to obtain
mesh-independent results during the description of the formation of shear zones
is the so-called strong discontinuity approach affording a finite element with a dis-
placement discontinuity (Larsson and Larsson 2000, Regueiro and Borja 2001).

There exist two models in hypoplasticity to describe textural anisotropy. The
first one was suggested by Bauer et al (2004) wherein a structure tensor was
included taking into account the space orientation of the bedding plane. The
concept follows the idea of Boehler and Sawczuk (1977) for plasticity. The struc-
tural tensor influences the nonlinear part of the hypoplastic equation in such a way
that the strength increases for the major normal stress perpendicular to the bed-
ding plane. This effect disappears at critical state. The anisotropic model requires
actually 2 additional material parameters which have the form of an exponential
function. The calculations with a gradient hypoplastic constitutive law (Tejchman
et al 2006) show that the model can realistically describe a decrease of the initial
stiffness, peak internal friction angle and volume change, and an increase of the
strain corresponding to the peak friction angle during plane strain compression
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test involving shear localization. The disadvantage of the model is the fact that
the material parameters have no physical meaning and the model is not able to
predict anisotropy if the initial void ratio is equal to the critical one. In turn, the
second model was proposed by Niemunis (2003) wherein the initial critical void
ratio was modified depending on the orientation of stress to the bedding plane.
Thus, the density factor increased the strength and volume change for loading
perpendicular to the bedding plane. The advantage of the model is the possibility
to impose anisotropy for all densities. The model has also two additional con-
stants. The calculations with a micro-polar hypoplastic constitutive law (Tejchman
and Niemunis 2005) show that the model can realistically describe a decrease of
the initial stiffness, peak internal friction angle and volume change during plane
strain compression test involving shear localization. However, the vertical strain
corresponding to the peak friction angle during a plane strain compression test
with shear localization is almost independent of the bedding orientation. In both
anisotropic hypoplastic models, the critical state line remains unique and isotropic.

In the paper, the effect of the orientation of the bedding plane on a spon-
taneous shear zone formation in initially cohesionless sand during plane strain
compression under constant lateral pressure was numerically investigated with the
finite element method and a micro-polar hypoplastic constitutive model (Tejch-
man et al 1999, Tejchman 2004) which is able to describe the essential properties
of granular bodies during shear localization in a wide range of pressures and
densities during monotonous deformation paths. To simulate anisotropic effects
due to texture and to avoid some disadvantages of existing anisotropic hypoplastic
models (Niemunis 2003, Bauer et al 2004), one hypoplastic material parameter,
namely granular hardness, was slightly modified. The calculations were carried
out with a uniform and stochastic distribution of the initial void ratio.

2. Experiments

Comprehensive laboratory experiments on the effect of texturial anisotropy were
performed for plane strain compression by Tatsuoka et al (1994). The tests were
carried out mainly with Silver Leighton Buzzard sand composed of sub-round
grains (mean grain diameter d50 = 0.62 mm, non-conformity coefficient Uc =
1.11). The specimen was 20 cm long and 8 cm wide. The confining platens were
very smooth. Dense specimens with a void ratio of about e0 = 0.55 were prepared.
Several different angles Ž were employed between the pouring direction and the
direction of the minor principal stress (Fig. 1). The angle Ž was the angle of the
direction of the major principal stress relative to the bedding plane direction. The
specimen was wetted, frozen, thawed and re-dried. Fig. 2 presents the relationships
among the stress ratio ¦ 1=¦3; the average shear strain  D "1 � "3 and the average
volumetric strain "v D "1 C "3 for different angles of Ž between 90 and 0 degrees
at ¦ 3 = 80 kPa (for dense SLB sand with e0 D 0.555–0.563).
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Fig. 1. Method used to prepare sand specimens (Tatsuoka et al 1994)

Fig. 2. Relationships among the stress ratio ¦1=¦3; the average shear strain  D "1 � "3 and the
average volumetric strain "v D "1 C "3 for different angles of Ž between 90 and 0 degrees at

¦3 D 80 kPa (Tatsuoka et al 1994)
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The experimental peak internal friction angle calculated by the Mohr’s formula
with the aid of principle normal stresses increases with increasing angle Ž, and is:
�p D 39:6Ž .Ž D 0Ž/, �p D 40:0Ž (Ž D 25Ž/, �p D 42:0Ž (Ž D 45Ž/, �p D 43:9Ž (Ž D
65Ž/ and �p D 45:1Ž (Ž D 90Ž), respectively. Thus, the peak friction angle increases
by about 10% with decreasing Ž. The peak friction angle is reached for the shear
strain  = 6–10% which increased as Ž decreased (in particular for Ž < 45Ž/. The
residual friction angle is about 25.5Ž. The average global dilatancy angle increases
with increasing angle Ž.

3. Micro-Polar Hypoplastic Model for Isotropic Materials

To describe shear localization, a non-polar hypoplastic constitutive law proposed
by Gudehus (1996) and Bauer (1996) for monotoneous deformation paths was
extended by means of a micro-polar continuum (Mühlhaus 1990). Each material
point has for the case of plane strain, three degrees of freedom: two translational
degrees of freedom and one independent rotational degree of freedom. The gradi-
ents of the rotation are connected to curvatures which are associated with couple
stresses. It leads to non-symmetry of the stress tensor and the presence of a char-
acteristic length.

A micro-polar hypoplastic constitutive law describes the evolution of stresses
and couple stresses depending on the current void ratio, stress and couple stress
state and rate of deformation and curvatures. Due to the incremental non-linearity
with the rate of deformation and curvature, it is able to describe both a non-linear
stress-strain and volumetric behaviour of granular bodies during shearing up to
and after the peak with two single tensorial equations. It includes also: barotropy
(dependence on pressure level), pycnotropy (dependence on density), dilatancy
and contractancy and material softening during shearing of a dense material. In
contrast to elasto-plastic models, a decomposition of deformation components into
elastic and plastic parts, the formulation of a yield surface, plastic potential, flow
rule and hardening rule is not needed. The feature of the model is a simple for-
mulation and procedure for determination of material parameters with standard
laboratory experiments (Herle and Gudehus 1999). The parameters are directly
related to granulometric properties encompassing grain size distribution curve,
shape, angularity and hardness of grains. The constitutive law can be summarized
for plane strain as follows (Tejchman 2004, Tejchman and Bauer 2005):
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wherein

¦i j – Cauchy stress tensor,

¦ Ł
i j – deviatoric part of ¦i j ,

o
¦ i j – Jaumann stress rate tensor (objective stress rate tensor),

mi – Cauchy couple stress vector,
o
mi – Jaumann couple stress rate vector (objective couple stress rate vec-

tor),

e – current void ratio,

dkl – rate of deformation tensor (stretching tensor),

wi j – spin tensor,

v – material velocity,

dc
i j – polar rate of deformation tensor,

ki – rate of curvature vector,

wc – rate of Cosserat rotation,

fs – stiffness factor,

hs – granular hardness,

¦kk – mean stress,

fd – density factor,

d50 – mean grain diameter,

ac – micro-polar constant,

ec – critical void ratio (ec0 – value of ec for ¦kk D 0/,

ed – void ratio at maximum densification .ed0 – value of ed for ¦kk D 0/,

ei – maximum void ratio .ei0 – value of ei for ¦kk D 0/,

Þ – pycnotropy coefficient,
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n – compression coefficient,

þ – stiffness coefficient,

a1 – parameter representing the deviatoric part of the normalized stress
in critical states,

�c – critical angle of internal friction during stationary flow,

� – Lode angle.

The changes of the values of ei , ed and ec decreasing with the pressure ¦kk

according to the exponential functions (Eqs. 15–17) are shown in Fig. 3. The
parameter a�1

1 is equal to 3.0–4.3 for the usual critical friction angles of granulates.

Fig. 3. Relationship between void ratios ei ; ec and ed and mean pressure ps in a semi-logarithmic
(a) and linear (b) scale (gray zones denote inadmissible states)

The constitutive relationship requires the following ten material constants:

ei0, ed0, ec0, �c, hs , þ, n , Þ, ac and d50. An exact calibration procedure of first
8 constants was given by (Herle and Gudehus 1999). The granulate hardness hs

is a density-independent reference pressure and is related to the entire skeleton
(not to single grains). The granular hardness hs and compression parameter n

are estimated from a single oedometric compression test with an initially loose
specimen (hs reflects the slope of the curve in a semi-logarithmic representation,
and n its curvature, Fig. 4). The constants Þ and þ are found from a triaxial or
plane strain test with a dense specimen and trigger the magnitude and position of
the peak friction angle. The angle �c is determined from the angle of repose or
measured in a triaxial test with a loose specimen. The values of ei0; ed0; ec0 and
d50 are obtained with conventional index tests (ec0 ³ emax; ed0 ³ emin; ei0 ³ 1.1–1.5
emax/. A micro-polar parameter ac can be correlated with the grain roughness with
the aid of a numerical analysis for shearing of a narrow granular strip between
two very rough boundaries (Tejchman and Gudehus 2001). It can be connected to

the parameter a�1
1 (e.g. ac D 1:0 ð a�1

1 /. In this case, the function Nc
i D 1:0a1

^
mi

(Eq. 6).
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Fig. 4. Influence of n and hs on compression curves for two different materials
(ps – mean pressure)

4. Micro-Polar Hypoplastic Model for Anisotropic Materials

The experiments (Fig. 2) show that the initial material stiffness depends on tex-

turial anisotropy. Therefore, in order to take this into account, the granular hard-

ness hs , which affects directly the stiffness factor in Eq. 18, was modified in the
following way:

�
hs D hs.1 C c ð a/; (24)

wherein c and a are the additional material parameters. The parameter a takes
into account the deviatoric stress inclination with respect to the orientation in the

physical space (Niemunis 2003)
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(Eq. 7) and the tensor
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The tensor Mi j represents the dyadic product of the normal unit vector of the

bedding plane (Fig. 5) with a bedding angle � D 90Ž � Ž

s D [� sin �; cos �; 0]: (27)

The components of the tensor Mi j (defining the space orientation of the sym-

metry plane) are
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Fig. 5. Normal vector s of the bedding plane (a) and its inclination � (b) with respect to a fixed
co-ordinate system (� – bedding plane inclination, × – shear zone inclination)
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Assuming that anisotropic effects vanish for large deformations at residual

state, the evolution of the parameter c was taken as

c D c1 exp.�c2� /; (29)
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is the length of the deformation path and ci are two constants: c1 (influencing the
magnitude of anisotropy) and c2 (influencing the rate of softening). The tensor

dc
k2 denotes the rate of polar deformation and vector ki is the rate of curvatures

(Eq. 12). Using Eq. 24, the same granular hardness is approached locally at large
deformations (e.g. within shear zones) whereas the average granular hardness
remains anisotropic. For � D 0; c D c1, and for � ! 1; c D 0.

The FE-analyses were carried out with the material constants for so-called
Karlsruhe sand: ei0 = 1.30, ed0 = 0.51, ec0 = 0.82, �c = 30Ž, hs D 190 MPa, þ =
1, n = 0.40, Þ = 0.20, ac = 1.0ða�1

1 and d50 = 0.5 mm. In turn, the anizotropic

constants ci were assumed to be c1 = 1.0 and c2 = 5.0 on the basis of initial
calculations. For c1 = 1.0, the difference between the peak internal friction angles
at � = 0Ž and � = 90Ž is about 5%–10%. In turn, for the constant c2 = 5.0 (the
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parameter �³ 1 in the shear zone at large deformations), the constant c in Eq. 29
becomes insignificant.

5. FE-data

FE-calculations of plane strain compression tests were performed with a sand
specimen which was h = 14 cm high and b = 4 cm wide (similarly as in the
experiments of Vardoulakis (1980)). In total, 896 quadrilateral elements (0:25 ð
0:25 cm2/ divided into 3584 triangular elements were used. The height of the finite
elements was not larger than five times mean grain diameter to properly capture
shear localization. The integration was performed with one sampling point placed
in the middle of each element.

A quasi-static deformation in sand was imposed through a constant vertical
displacement increment 1u prescribed at nodes along the upper edge of the
specimen. The boundary conditions of the sand specimen implied no shear stress
at the smooth top and smooth bottom. To preserve the stability of the specimen
against horizontal sliding, the node in the middle of the top edge was kept fixed.
The vertical displacement increments were chosen as 1u=h D 0:00005. 8000 steps
were performed.

As the initial stress state, a K0-state with ¦22 D dx2 and ¦11 D K0dx2 was
assumed in the specimen; x2 is the vertical coordinate measured from the top of
the specimen, d denotes the initial volume weight and K0 = 0.50 is the earth
pressure coefficient at rest (¦11 – horizontal normal stress, ¦22 – vertical normal
stress). Next, the confining pressure ¦c = 200 kPa was prescribed.

The calculations were carried out with a uniform initial void ratio or with two
different stochastic distributions of void ratio (using a normal Gauss distribution
and a distribution with an exponential frequency function following Shahinpoor
(1981) and Nübel and Karcher (1998)). In the case of the normal distribution,
a polar form of the so-called Box-Muller transformation (1958) was used. One
assumed the mean value of void ratio e0 = 0.60 with a standard deviation 0.04 and
a cut-off š0:4. In the latter case, the spatially fluctuating initial void ratio e was
calculated for individual finite elements from the formula given by Shahinpoor
(1981)

e D �
1

½
ln [.1 � r / exp .�½em/ C r exp .�½eM/] ; (31)

wherein the parameters are: ½ = 1.0 (for a mean void ratio
�
e0 = 0.60), em = 0.001

and eM = 1.64. The random number r is chosen between 0 and 1. Eq. 31 has been
derived analogously to the partition function of statistical mechanics, imposing
bounds em and eM upon the size of the individual Voronoi cells however. The
deviation of the distribution of void ratio increases with decreasing number of
voids (grains) in a volume element and decreasing mean global void ratio of the



362 J. Tejchman

specimen. Since the area of each finite element was 5d50ð5d50 in 2D-calculations,
the initial void ratio in each element was assumed as the mean value of 25 random
values calculated by Eq. 31. In all cases, the initial void ratio was limited by the
pressure-dependent void ratios ei (Eq. 15) and ed (Eq. 16).

For the solution of a non-linear system, a modified Newton-Raphson scheme
with line search was used with a global stiffness matrix calculated with only first
terms of the constitutive equations (Eqs. 1). The stiffness matrix was updated
every 100 steps. To accelerate the calculations in the softening regime, the initial
increments of displacements and Cosserat rotations in each calculation step were
assumed to be equal to the final increments in the previous step. The procedure
was found to yield a sufficiently accurate and fast convergence. The magnitude
of the maximum out-of-balance force at the end of each calculation step was
less than 2% of the calculated total vertical force along the top of the granular
specimen. Due to the presence of non-linear terms taking into the direction of
the deformation rate and material softening, this procedure turned out to be
more efficient than the full Newton-Raphson method. The iteration steps were
performed using translational and rotational convergence criteria. For the time
integration of stresses in finite elements, a one-step Euler forward scheme was
applied.

The calculations were carried out with large deformations and curvatures using
the so-called “Updated Lagrangian” formulation due to their effect on the results
(Tejchman 2004).

6. FE-results

6.1. Stochastic Distribution of Initial Void Ratio

The numerical results for 3 different bedding plane orientations � with a stochastic

distribution of the initial void ratio of
�
e0 D 0.60 (according to the Gauss and

Shahinpoor distribution) are depicted in Figs. 6–8. The load-displacement curves
are shown in Fig. 6 (P – resultant vertical force on the top, b D 0:04 m – specimen
width, u2 – vertical displacement of the top, h D 0:14 m – initial height of the
sand body, l = 1.0 m). In turn, Fig. 7 shows the deformed FE-meshes with the
distribution of the equivalent total strain " D p

"i j "i j at residual state (u2=h =
0.107). In Fig. 8, the evolution of the equivalent total strain in specimen before
and after the peak is described. The darker the region, the higher ". The entire
range of the strain measure was divided into 20 different shadows, respectively.

Similarly, as in the experiments (Section 2), the vertical force on the top edge
is the largest for � = 0Ž and smallest for � = 90Ž. The peak overall internal friction
angle calculated with the aid of principle stresses ¦1 D P=.bl/ and ¦2 D ¦ c

� D arcsin
¦1 � ¦2

¦1 C ¦2
(32)
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Fig. 6. Effect of the bedding plane inclination � of Fig. 5 on the normalized load-displacement

curve with
�
e0 = 0.60: A) Gauss distribution, B) Shahinpoor distribution: 1. � = 00, 2. � = 45Ž,

3. � = 90Ž

changes between 39.6 (� = 90Ž/, 40.1Ž (� = 45Ž/ and 40.8Ž (� = 0Ž/ using the Gauss

distribution and 39.8Ž (� = 90Ž/, 41.0Ž (� = 45Ž/ and 42.0Ž (� = 0Ž/ using the

Shahinpoor distribution (¦ 1= P/(bl), ¦ 2= ¦ c/, respectively. The residual friction

angle is the same, i.e. 31.5Ž–32.0Ž. The vertical strain corresponding to the peak
increases with increasing � (from u2=h = 0.032 for � = 0Ž, u2=h = 0.034 for � =

45Ž and up to u2=h = 0.039 for � = 90Ž using the Gauss distribution, and from

u2=h = 0.030 for � = 0Ž, u2=h D 0:031 for � D 45Ž and up to u2=h D 0:035 for

� D 90Ž using the Shahinpoor distribution).

One shear zone occurs inside the specimen which crosses it and whose location

is induced by a stochastic distribution of the initial void ratio (Fig. 7). The thickness
on the basis of shear deformation and modulus of deformation decreases from

about 8.5 mm (17 ð d50/ for � D 0Ž down to 8.0 mm (16 ð d50/ for � D 90Ž for the

Gauss distribution and from about 8.0 mm (16 ð d50/ for � D 0Ž down to 7.5 mm
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Fig. 7. Deformed meshes with the distribution of equivalent total strain " D p
"i j "i j at residual

state at u2=h = 0.11 with
�
e0 = 0.60: A) Gauss distribution, B) Shahinpoor distribution, a) � = 0Ž,

b) � = 45Ž, c) � = 90Ž
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Fig. 8. Deformed mesh with the distribution of equivalent total strain " D p
"i j "i j at: a) u2=h =

0.027, b) u2=h = 0.036, c) u2=h = 0.045 (Shahinpoor distribution of e0 with
�
e0 D 0:60, � = 45Ž/

(15 ð d50/ for � D 90Ž for the Shahinpoor distribution. In turn, the inclination
against the bottom decreases from about 52Ž (� D 0Ž/ down to 49Ž (� D 90Ž/.
However, in the experiments (Abelev and Lade 2003), a more significant decrease

of the shear zone inclination was observed (from 55Ž for � D 0Ž down to 45Ž for
� D 90Ž/. During initial deformation, a pattern of shear zones can first be observed

(Fig. 8). Next, strain localization continues to localize within a single zone.

6.2. Uniform Distribution of Initial Void Ratio

The normalized load-displacement curves for different bedding plane orientations

� with the initial uniform void ratio of e0 D 0:60 and e0 D 0:70 are shown in Figs. 9
and 12, respectively. No weak element was introduced to trigger shear localization.

The deformed FE-mesh with the distribution of the equivalent total strain " at
residual state and before and after the peak is demonstrated in Figs. 10, 11 and

13, respectively.

In this case, the vertical force on the top edge increases with decreasing bed-
ding angle as well. The vertical strain corresponding to the maximum vertical force

also increases with increasing bedding angle. The effect of anisotropy decreases
with increasing initial void ratio. The peak internal friction angles lie between
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Fig. 9. Effect of the bedding plane inclination � of Fig. 5 on the normalized load-displacement
curve (uniform distribution of e0 D0.60): 1. � = 0Ž, 2. � = 45Ž, 3. � = 90Ž

Fig. 10. Deformed meshes with the distribution of equivalent total strain
�
" D p

"i j "i j at residual
state at u2=h = 0.11 (uniform distribution of e0 = 0.60): a) � = 0Ž, b) � = 45Ž, c) � = 90Ž
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Fig. 11. Deformed mesh with the distribution of equivalent total strain " D p
"i j "i j at: a) u2=h =

0.036, b) u2=h = 0.045, c) u2=h = 0.054 (uniform distribution of e0 = 0.60, � = 45Ž/

Fig. 12. Effect of the bedding plane inclination � of Fig. 5 on the normalized load-displacement
curve (uniform distribution of e0 D 0:70): 1. � = 0Ž, 2. � = 45Ž, 3) � = 90Ž
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Fig. 13. Deformed meshes with the distribution of equivalent total strain " D p
"i j "i j at residual

state at u2=h = 0.11 (uniform distribution of e0 = 0.70): a) � = 0Ž, b) � = 45Ž, c) � = 90Ž

39.4Ž-40.6Ž (e0 = 0.60) and 35.0Ž–35.7Ž (e0 = 0.70). They are slightly smaller than
those calculated with stochastic distributions of the initial void ratio (Fig. 6).

One shear zone occurs inside of the specimen although a uniform initial void

ratio was assumed. It is always located at mid-region of the specimen. The shear
zone thickness slightly decreases with increasing angle � ; from about 8.0 mm

(16 ð d50/ down to 7.5 mm (15 ð d50/ for � = 90Ž in the case of e0 = 0.60, and is

about 10 mm (20 ð d50/ in the case of e0 = 0.70. In turn, the inclination against
the bottom decreases from 50Ž (� = 0Ž/ down to 47Ž (� = 90Ž/ for e0 = 0.60, and

is about 47Ž for e0 = 0.70.

The formation of shear localization is completely different in the initial phase
(Fig. 11) as compared to the results with a stochastic distribution of the initial

void ratio (Fig. 8). The shear localization initially develops simultaneously at the

left lower corner and at the right top corner. Next, an inclined shear zone occurs
in the middle of the specimen combining two regions developing further to reach

a final position.

The effect of the initial void ratio is depicted in Figs. 12 and 13. The larger the

initial void ratio, the smaller the effect of anisotropy on the results. The shear zone
thickness (about 20 ð d50/ and shear zone inclination (about 48Ž/ are practically

not influenced by the orientation of the bedding angle.

7. Conclusions

The following conclusions can be derived on the basis of FE-calculations of

plane strain compression with the hypoplastic constitutive model enhanced by
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micro-polar terms to capture shear localization and with the modified granular
hardness to describe texturial anisotropy:

ž The anisotropic effect vanishes at residual state.

ž The larger the bedding plane inclination, the smaller the peak internal fric-
tion angle.

ž The vertical strain corresponding to the peak on the load-displacement curve
increases with the bedding plane orientation.

ž The shear zone thickness decreases slightly with increasing bedding plane
inclination.

ž The shear zone inclination decreases with increasing bedding plane inclina-
tion.

ž The position of the shear zone depends strongly on the distribution of the
initial void ratio. In the case of the uniform distribution of the initial void
ratio, the shear zone is always located at mid-region.

ž The initial formation of shear localization strongly depends on the fact of
if the initial void ratio is distributed stochastically or uniformly.

ž The peak internal friction angles are slightly larger when using a stochastic
distribution of the initial void ratio.

ž The effect of anisotropy on shear localization decreases with increasing ini-
tial void ratio.

The FE-analyses will be continued. A careful calibration procedure of material
constants will be performed to obtain a quantitative agreement with experiments
(e.g. by Tatsuoka et al 1994). The calculations will be carried out for other rate
boundary value problems involving shear localization. The distribution of the ini-
tial void ratio will be assumed to be spatially correlated (Walukiewicz. et al 1997).
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