PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A turbulence model for 3-d flows with anisotropic structure of turbulence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new turbulence model for flows in open channels with compound cross-sections is presented. The structure of turbulence in these channels can be anisotropic. This structure is described by the turbulent stress tensor that is presented here as the sum of two tensors, namely, normal and shear stress tensors. The normal and shear turbulent stresses are expressed by the turbulence intensities and the mixing length tensor (MLT), respectively. The turbulence intensities can be learned from measurements or another suitable approaches. One such approach that allows calculating the main component of the normal stresses is presented in the paper. The components of MLT are defined based on a new concept of generic mixing length (GML). The generic mixing length is assumed to depend on both distances; from the nearest wall and from the water surface. To demonstrate how the new model works the basic hydrodynamic equations (parabolic approximation of Reynolds equations) together with the turbulence model are solved. The well-known Patankar and Spalding (1972) algorithm was used when solving these equations. A series of numerical simulations were performed for different components of MLT and different channel geometries.
Twórcy
  • Polish Academy of Sciences, Institute of Geophysics, Ks. Janusza 64, 01-452 Warsaw, Poland
autor
  • Institute for Water and Environmental Problems, Papanintsev 105, Barnaul, Russia
Bibliografia
  • Aris R. (1989), Vectors, Tensors and the Basic Equations of Fluid Mechanics., Dover Publications, Inc., New York.
  • Cokljat D., Younis B. A. (1995), Second-order closure study of open-channel flows, Journal of Hydraulic Engineering, 121, 94–107.
  • CzernuszenkoW., Rylov A. (2000), A generalization of Prandtl’s model for 3D open channel flows, Journal of Hydraulic Research, 38, No. 2, 133–139.
  • Czernuszenko W., Rylov A. (2002), Modelling of 3D velocity field in open channel flows will appear, Journal of Hydraulic Research, 40, No. 2, 135–144.
  • Knight D. W., Yuen K. W. H., Alhamid A. A. I. (1994), Boundary Shear Stress Distributions in Open Channel Flow, [in:] Physical Mechanisms of Mixing and Transport in the Environment, Ed. Beven K., Chatwin P. C., Millbark J., J. Wiley.
  • Krishnappan G. B., Lau Y. L. (1986), Turbulence modeling of flood plain flows, Journal of Hydraulic Engineering, 112 (4), 251–266.
  • Launder B. E., Spalding D. B. (1974), The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, 3, 269.
  • Naot D., Nezu I., Nakagawa H. (1993), Hydrodynamic behavior of compound rectangular open channels, Journal of Hydraulic Engineering, 119 (3), 390–408.
  • Nezu I., Nakagawa H. (1993), Turbulence in Open-Channel Flows, A. A. Balkema, Rotterdam.
  • Nezu I., Rodi W. (1986), Open-channel flow measurements with a laser doppler anemometer, Journal of Hydraulic Engineering, 112, No. 5, 335–355.
  • Patankar S. V., Spalding D. B. (1972), A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, J. Heat Mass Transfer, Vol. 15, 1787–1806.
  • Rastogi A. K., Rodi W. (1978), Predictions of heat and mass transfer in open channels, Journal of the Hydraulics Division, 104, No. HY3, 397–420.
  • Schlichting H. (1955), Boundary Layer Theory, McGraw Hill, London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0034-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.