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Abstract

A new turbulence model for flows in open channels with compound cross-sections
is presented. The structure of turbulence in these channels can be anisotropic. This
structure is described by the turbulent stress tensor that is presented here as the
sum of two tensors, namely, normal and shear stress tensors. The normal and shear
turbulent stresses are expressed by the turbulence intensities and the mixing length
tensor (MLT), respectively. The turbulence intensities can be learned from measure-
ments or another suitable approaches. One such approach that allows calculating the
main component of the normal stresses is presented in the paper. The components
of MLT are defined based on a new concept of generic mixing length (GML). The
generic mixing length is assumed to depend on both distances; from the nearest wall
and from the water surface. To demonstrate how the new model works the basic
hydrodynamic equations (parabolic approximation of Reynolds equations) together
with the turbulence model are solved. The well-known Patankar and Spalding (1972)
algorithm was used when solving these equations. A series of numerical simulations
were performed for different components of MLT and different channel geometries.

Key words: 3D flow, mathematical model, numerical simulation, open channel
flow, turbulence model

1. Introduction

Flows in an open channel with compound cross section are considered here to
be stationary turbulent flows of Newtonian fluid, uniform in a longitudinal direc-
tion. Flow conditions in these channels lead to a complex 3D turbulent structure,
which is generated by the channel bottom. Due to non-regular cross section the
slope of the tangent to the channel bottom with respect to horizontal plane var-
ies in different points of the channel bottom. This causes velocity distribution in
cross section to be rather complicated with anisotropic structure of turbulence.
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To describe this three-dimensional (3D) highly complicated velocity field, very ad-

vanced mathematical models have been developed, e.g. the algebraic stress model

(ASM), see for example (Krishnappan and Lau 1986) or (Naot et al 1993), or the

complete Reynolds-stress-transport model of turbulence, see for example (Cokljat

and Younis 1995). Unfortunately, these 3D models require a large number of em-

pirical constants which means they are not very useful for engineering purposes.

These models, despite their achievements in description of the 3D-velocity field,

are not suitable for engineers in calculating velocity and other flow characteristics

in compound channel flows. For example, the above-mentioned algebraic stress

model comprises 11 differential equations with 7 empirical coefficients and two

empirical functions. The set of equations contains three momentum equations

and continuity equation governing the three-dimensional mean motion and the

mean pressure, two transport equations for the energy of turbulence and their dis-

sipation and six algebraic equations representing the anisotropy by means of the

Reynolds stresses given in terms of the turbulence energy, dissipation and mean

velocity gradients. In so complicated a set of differential equations it is impossible

to realize the roles of all those empirical coefficients and functions involved. Fur-

thermore, applying any calibration procedure for these models is doubtful, and

in turn, using these models for other channels is questionable. Engineers need

a model that is easy to understand, simple to calibrate and reasonably good.

The three-dimensional turbulent models for typical open channel flows, that

match all engineering demands are rather scarce. The main goal of this paper

is to present a model that takes into account the origin of turbulence, the an-

isotropy of turbulence structure and at the same time is reasonably good and

simple to calibrate. The model is based on a new, modified 3D mixing length

hypothesis (MLH) developed by Czernuszenko and Rylov (2000). In this modific-

ation the normal turbulent stresses are treated as anisotropic and the model for

these stresses is presented. The model for shear stresses is redefined compared

with the first version of 3D MLH (see Czernuszenko and Rylov 2000). Now these

two sub-models, for normal and shear stresses, are clearer and easy to adopt for

numerical procedure that solves basic hydrodynamic equations.

Presented turbulence model can be used for compound open channels with

any cross section the bed curve of which holds a property: a vertical line segment

connecting each inner flow point to the corresponding surface point lies entirely

inside the cross section. In this case the normal and shear turbulent stresses can

be defined first in the local coordinate system and then transformed into the

global coordinate system in which the hydrodynamics equations are written. It is

also shown how to define the local and global coordinate systems and define the

transformation between both of them.



A Turbulence Model for 3-D Flows with Anisotropic Structure of Turbulence 305

2. Basic Hydrodynamic Equations

Three-dimensional, steady and uniform turbulent flow in an open channel is gov-
erned by the Reynolds-averaged Navier-Stokes equations. The continuity and
momentum equations for incompressible turbulent flows may be written in the
Cartesian tensor notation in the forms:

– continuity equation
@ Ui

@ xi
D 0; (1)

– momentum equations
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where Ui is the i-th component of the time average velocity (i D 1; 2; 3), p is the
pressure, ² is density and F D .g sin Þ; g cos Þ; 0). A notation of x for horizontal
(longitudinal), y for vertical (downwards) and z for lateral coordinates as well as
U; V; W for corresponding velocity components will also be used in the paper.

3. Turbulence Model

A new turbulence model is an extended version of models presented by
Czernuszenko and Rylov (2000) and Czernuszenko and Rylov (2002). The model
describes the turbulence structure in the case of anisotropic normal turbulent
stresses, as well as the anisotropic shear stresses in the form of:
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where: ui is the i-component of turbulent velocity vector, li j – the mixing length
tensor, Di j – the deformation rate tensor

Di j D
@Ui

@x j
C

@Uj

@xi
(4)

and quantity S are defined by the formula (Czernuszenko and Rylov 2000)
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For the open channel flows the right-hand sum in Eq. (5) may be reduced to
two terms containing derivatives of streamwise velocities in lateral and vertical
directions, respectively. The other terms in the sum above containing the lateral
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and vertical components of the mean velocity vector do not exceed 1–2% of the
streamwise component. The upper line on the right-hand side of Eq. (3) represents
the normal turbulent stresses. The shear stresses are written in the second line of
Eq. (3).

For 2-D flows, since S D jdU=dyj, Dx y D Dy x D dU=dy and Dx x D Dx z D
Dyy D Dzy = 0, the shear stress takes the form (from Eq. 3):

� ² ux uy D
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If MLT is isotropic, Eq. (6) turns into the Prandtl’s mixing length formula
(see Schlichting 1955). This is the reason why the turbulence model (Eq. 3) can
be called the 3D mixing length hypothesis. This hypothesis needs to specify the
normal and shear turbulence stresses at any point of the cross-section for prescrib-
ing the total turbulent stress tensor. One can use Eq. (6) to define an effective
eddy viscosity in 2D uniform, turbulent flows as
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3.1. Normal Turbulent Stresses

Components of normal turbulent stresses can be calculated or measured. There
are three universal functions for calculation normal stresses in 2D flows given
by Nezu and Nakagawa (1993). These functions define the turbulence intensities
depending on distance from the bottom in the form:

q

u2
i

UŁ
�

u0
i

UŁ
D Di exp .�Ck¾/ (8)

where Di (i = 1, 2, 3) and Ck are empirical constants and ¾ is a non-dimensional
distance from the wall.

The precise measurements of velocity in 2D open channel flows allow
to evaluate the empirical constants in equations (8) as follows: Ck D 1; D1 D
2:30, D2 D 1:27 and D3 D 1:63 (see Nezu and Nakagawa 1993). Eqs. (8) with
above-mentioned coefficients fit the measurement data quite well especially in the
region 0:1 < ¾ < 0:8 (Nezu and Nakagawa 1993). It is worth noting that the longit-
udinal intensity is larger than transverse ones and suitable ratios are: v0=u0 D 0:55
and w0=u0 D 0:71. It is assumed that Eq. (8) could be applied to any point of the
channel cross-section. In the case of 3D flow, the non-dimensional distance from
the wall is redefined as follows,

¾ D
d1

d1 C d2
; (9)
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where d1 and d2 are distances from the nearest wall and water surface, respectively
(Fig. 1).

Fig. 1. Distances from point P to water surface and walls for different positions of point P in the
channel cross-section. .Y; Z/ – global coordinate system, .Y0; Z0/ – local coordinate system

3.2. Shear Turbulent Stresses

To calculate the shear stresses the MLT, as well as the deformation tensor, should
be specified. The components of MLT are defined first in the Cartesian coordinate
system in which the MLT has a diagonal form. This coordinate system is called
the local coordinate system (LCS). It is well-known that LCS in which tensor li j
has only three non-zero components l11, l22, and l33 always exists. Below, these
three components are referred to as lx , ly , and lz respectively. To define these
components a generic mixing length is defined as an analogue of Prandtl’s mixing
length, but established in the whole cross-section of a channel in the form:

lG.P/ D .d1 C d2/ �
p

1 � ¾

�

1

¾
C ³ 5 sin.³¾/

��1

0.¾/; (10)

where: � is the Karman constant, 5 is the Coles wake coefficient, 0.¾/ is van
Driest’s damping function and ¾ is defined by Eq. (9). The wake coefficient for
open channel turbulent flows is near zero at moderate Reynolds number and
this value is taken for further considerations. Van Driest’s function shows that
the mixing length does not vary linearly with distance from the wall. It takes
into account the effect of lowering mixing length very close to the wall (see e.g.
Launder, Spalding 1974). In our case, it is assumed that 0.¾/ is constant and equal
to 1.

It is worth noting that the mixing length calculated from Eq. (10) for flow
points located far away from the side walls, gives the same mixing length as the



308 W. Czernuszenko, A. Rylov

formula for Prandtl’s mixing length given by Nezu and Rodi (1986). Close to walls

(vertical or inclined) the depth is not equal to the sum of d1 and d2. Based on

the generic mixing length the main components of the mixing length tensor can

be defined in the following way

lx D plG ; ly D qy lx ; lz D qzlx (11)

where p; qy and qz are empirical, positive coefficients. Bearing in mind that Eq.

(10) should converge to Prandtl’s formula in the middle zone of the channel, it

results in constraints on the above-mentioned coefficients

p2.1 C q2
y / D 2 for p <

p
2: (12)

The decomposition defined by Eq. (11) invokes 3D mixing length ellipsoid

with main axes lx , ly and lz . This means that the scalar mixing length in Prandtl’s

approach becomes the mixing length ellipse in 2D flow or ellipsoid in the 3D case.

Prandtl mixing length can characterize an average size of turbulent eddies.

Near walls this size is close to zero, and near the water surface it is the largest.

The largest vertical size of turbulent eddies is an order of the flow depth, but

the largest mixing length calculated from Eq. (10) is about 1/7 of the depth.

Presumably, there is a relation between the mixing length ellipsoid and size of

turbulent eddies. Thus, decomposition of l3D into three main components of the

mixing length tensor gives in turn: decomposition of spherical turbulent eddies

into 3D ellipsoid eddies. Measurement data show that turbulent eddies in open

channel flows are extended in a longitudinal direction, so one can expect qy < 1

and p > 1. Eqs. (11) and (12) enable estimation of the components of the mixing

length tensor when the generic mixing length, as well as the two coefficients p

and qz are known.

4. Global Coordinate System

Cartesian coordinate system in which basic hydrodynamics equations are written,

is called the global coordinate system (GCS). Formulae (8) and (10) enable cal-

culating the intensities of turbulence and components of MLT only in LCS, i.e.

in the coordinate system where these quantities form diagonal tensors. Generally,

the coordinate axes of LCS have a different direction from those of the global co-

ordinate system (GCS). It depends on the geometry of the channel, whether GCS

and LCS coordinate axes actually have the same directions or not. Both coordinate

systems rigidly rotate to each other. The rotation is specified by an angle between

adequate axes of these systems. Denote the angle by Þ, then transformation will

be described by the matrix
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T D

2

4

1 0 0
0 cos Þ sin Þ

0 � sin Þ cos Þ

3

5: (13)

This means, if a point P has coordinates .x 0
1, x 0

2, x 0
3) in LCS and (x1, x2, x3/ in

GCS, then these coordinates are transformed as

[x] D T[x0]; (14)

where column vectors [x] and [x0] refer to the point coordinates in GCS and
LCS, respectively. Further in the text, the coordinates of points or vectors, as well
as the components of MLT in LCS will be primed, but in GCS these quantities
will appear without a prime. Please note that so far, the coordinates of the local
coordinate system have been used without prime.

The mixing length tensor is a second order tensor. In LCS it has components
l 0
i j defined by Eqs. (10) and (11). The components of this tensor in GCS, which
is rotated about angle Þ relative to LCS, are denoted by li j and read (Aris 1989):

L D TL0T
�1

where L D [li j ]; L0 D [l 0
i j ]: (15)

Combining Eqs. (10) and (15) gives an explicit formula for components of
MLT in GCS
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It is easy to notice that when l 0
x D l 0

y D l 0
z the above formula gives an isotropic

MLT. For the angle Þ = 90Ž the components of MLT form a diagonal matrix.
Also for Þ = 45Ž MLT takes a rather simple form.

While considering the normal turbulent stress tensor, its components in LCS
will be assumed to be known and they will be denoted by a prime. Here the same
usage of a prime is applied as for MLT, i.e. components of normal stresses in LCS
will be primed, and in GCS these quantities will appear without a prime. In LCS
the normal turbulent stress tensor is as follows
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Having components of the normal turbulence stresses in LCS, one can calcu-
late them in GCS in the same way as components of MLT, namely

N D T N0 T�1: (18)
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After some algebra one can obtain the following formulae for the main com-
ponents of normal turbulent stress tensor in GCS:

u2 D
�

u2
Ð0

;

v2 D
�

v2
Ð0

cos2 Þ C
�

w2
Ð0

sin2 Þ;

w2 D
�
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sin2 Þ C
�

w2
Ð0

cos2 Þ:

(19)

In the above equations density is omitted for simplicity.

5. Hydrodynamic Model

Consider an open channel that is tilted in a longitudinal direction, the bed slope
is defined by an angle Þ and walls are smooth or rough. The flow is supposed
to be steady with average velocity components .U; V; W/ directed in x ; y and z

directions, respectively. It is assumed that the turbulent transport of momentum
in the x -direction is negligible. Therefore, the terms involving second derivatives
with respect to x are negligible. This kind of flow is usually called parabolic in the
longitudinal direction. The basic equations describing the 3D-velocity field in open
channel flows are the continuity (1) and momentum equations (2). Substituting
Eq. (3) into Eq. (2) and neglecting higher order terms one can obtain momentum
equations in the form:
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where p is the pressure, S is defined by Eq. (5), lx , ly , lz and lyz are functions of
l 0
x , l 0

y , l 0
z and can be found from Eq. (16).
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The boundary conditions need to be specified along solid boundaries, water
surface and up-stream cross-section bounding the calculation domain. Since para-
bolic flows are considered, boundary conditions do not need to be given at the
downstream end of the calculation domain.

It is assumed that the flow is uniform with constant width and depth. The
conditions at the solid boundaries were specified using wall functions technique
proposed by Launder and Spalding (1974). According to this, the conditions are
specified at a point near a wall which lies outside the laminar sublayer and satisfies
30 < UŁyw=¹ < 100. It is assumed that the shear stress and velocity at this grid
point satisfy the logarithmic portion of the universal law of the wall

Uw

UŁ
D

1

�
ln

yw

kŁ
C A;where

8

<

:

for smooth channels kŁ D¹=UŁ; A � As D 5:5;

for rough channels kŁ � ks ; A � Ar D 8:5;

(23)

where:

UŁ – friction velocity,

yw – distance from the wall,

¹ – molecular viscosity,

A – constant coefficient and

ks – the equivalent sand roughness for irregular surfaces.

The normal velocity components at the solid boundaries and free surface
are set at zero. The free surface boundary conditions were specified following
the approach of Rastogi and Rodi (1978), which considers free surface acting as
a plane of symmetry. Therefore, the gradients of U and V in the y-direction are
zeros. The condition at the initial cross section x = 0 for longitudinal velocity
U was taken along with logarithmic distribution. Components V and W were set
equal to zero.

To solve the above set of equations the numerical parabolic procedure known
as the Patankar-Spalding algorithm is applied. It solves the set of the above equa-
tions for three components of velocity U; V; W at each forward step in a longit-
udinal direction. After having computed component U at the next x -step from
the discrete form of Eq. (20), U is corrected to preserve the prescribed discharge.
Then both V and W discrete analogues for Eqs. (21)–(22) are solved to get first
approximation for these velocity components at the next x -point cross section. The
last stage of solution procedure uses the V; W-values and adjusts them to satisfy
the discrete continuity equation. It means that Eqs. (1, 21, 22) in their discrete
form are combined to produce an equation for the pressure field in cross section.
The pressure found allows computing residuals to correct secondary velocities. All
linear systems, which appear in the discretization process, hold maximum principle
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and therefore, they are stable while solving. The scheme uses a mixed pattern in
approximation of convective terms in motion equations. Generally, it is of the
second order but it degrades to first-order upwind scheme when secondary velo-
city components are comparable to U values. Fortunately, in the flow cases under
consideration, the primary velocity component always dominates over secondary
velocity values, and therefore, accuracy of the second order is asserted.

6. Numerical Simulations of Flows in Trapezoidal Compound Channel

The numerical simulations were performed for stationary, uniform turbulent flow
in the straight, smooth compound channel. The channel is 52 cm wide at the wa-
ter surface and widths of main channel and flood plane are 0.15 m and 0.075 m,
respectively. The depths of main channel and flood plane are 0.11 m and 0.075 m,
respectively. The longitudinal bed slope is 1:03 ð 10�3 and the sidewalls are in-
clined under the angle of 45 degrees.

The main objective of the numerical simulations is to show the most important
features of the presented turbulence model, like its ability to describe the primary
velocity distributions as well as the secondary flows for different structure of tur-
bulence. The structure was defined by the size of main components of the MLT
or in other words by the relative magnitudes of coefficients p, qy and qz defined
by Eq. (11). All cases of numerical simulations are displayed in Table 1.

Table 1. Numerical simulations for trapezoidal compound channel:

lx , l y and lz – main components of mixing length tensor, Gradx p – the longitudinal mean

pressure gradient and Qmax D .V2 C W2/0:5
max

Case 1 Case 2 Case 3 Case 4 Case 5
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

x – component lx D lG lx D 1:26lG lx D 1:38lG lx D lG lx D lG
y – component l y D lx l y D 0:51lx l y D 0:22lx l y D lx l y D lx
z – component lz D lx lz D 0:51lx lz D 0:22lx lz D 0:67lx lz D 1:45lx
Gradx p [N/m2] –3.1 –3.1 –3.1 2.8 3.9
Qmax [m/s] 0.0116 0.0144 0.0174 0.0126 0.0103
Umax [m/s] 0.345 0.345 0.345 0.34 0.339

6.1. Results of Numerical Simulations

For isotropic MLT the prime velocity contour is very regular with logarithmic
profile in the channel centre (Case 1, Fig. 2a). The intensity of secondary flow
is rather weak, Qmax = 0.0116 m/s (see Fig. 2b). If the MLE is elongated in
a longitudinal direction, i.e., lx is twice (Case 2, Fig. 3a, b) and 4.5 times longer
than ly and lz (Case 3, Fig. 4a, b), the prime velocity contour remains almost the
same and the intensity of secondary flow increases to 0.0144 m/s and 0.0174 m/s,
respectively (Fig. 3b and Fig. 4b). This behaviour is easy to explain by analyzing
Eqs. (20), (21) and (22) as follows: the x -momentum equation remains the same
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for any set of parameters p; qy and qz, provided that qy D qz and Eq. (12) is valid.
One can easily see from transversal components of momentum equations, that as
both ly and lz decrease, the transversal eddy viscosities also decrease. It causes,
in turn, the increase of transversal velocities and the intensity of secondary flow,
namely from 0.0116 m/s (Case 1) via 0.0144 m/s (Case 2) to 0.0174 m/s (Case 3).

Fig. 2a. Prime velocity distribution for: lx D lG, l y D lx , lz D lx

Fig. 2b. Secondary currents pattern for: lx D lG, l y D lx , lz D lx ; Qmax D 0:0116 m/s
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Fig. 3a. Prime velocity distribution for: lx D 1:26lG; l y D 0:51lx ; lz D 0:51lx

Fig. 3b. Secondary currents pattern for: lx D 1:26 lG; l y D 0:51lx ; lz D 0:51lx I Qmax = 0.0144 m/s

The pressure gradient in x -direction is the same for these cases, and equals to
–3.1 N/m2. It means that the total viscosity influence (joint impact of all terms
describing viscosity) in the x -momentum equation is almost the same. Thus, the
prime velocity contours are the same in these cases.
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Fig. 4a. Prime velocity distribution for: lx D 1:38lG; l y D 0:22lx ; lz D 0:22lx

Fig. 4b. Secondary currents pattern for: lx D 1:38lG , l y D 0:22lx ; lz D 0:22lx I Qmax = 0.0174 m/s

Comparing three other cases, namely: lz : ly D 0:67 (Case 4, Fig. 5), lz : ly D 1
(Case 1, Fig. 2) and lz : ly D 1:45 (Case 5, Fig. 6) some differences in the results of
numerical simulations are easy to notice (see Table 1). First of all, among the cases
under consideration gradx p is lowest and negative for isotropic MLT (Case 1).
Less values of pressure gradient gradx p correspond to less viscosity in the flow.



316 W. Czernuszenko, A. Rylov

Fig. 5a. Prime velocity distribution for: l y D lx ; lz D 0:67lx

Fig. 5b. Secondary currents pattern for: l y D lx ; lz D 0:67lx I Qmax = 0.0126 m/s

Mathematically it is obvious from x -momentum equation, where all viscous terms

on the right hand side should balance pressure gradient terms on the left hand

side. Inertia terms have a lower order of magnitude, and the gravitation term is

constant. From a physical standpoint greater viscosity invokes greater pressure

forces inside the flow. So the term gradx p can be considered as an indicator of

the total flow viscosity. It is interesting that in Case 4 the total viscous effect is

stronger than in the isotropic Case 1. This effect can be explained by additional
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viscous terms, which become nonzero when transversal components of MLT in
LCS are different, as in Case 4 and Case 5 (see Table 1 and Eq. 16).

Fig. 6a. Prime velocity distribution for: l y D lx ; lz D 1:45lx

Fig. 6b. Secondary currents pattern for: l y D lx ; lz D 1:45lx I Qmax = 0.0103 m/s

The prime velocity contours for l 0
z : l 0

y D 0:67 (Case 4) and l 0
z : l 0

y D 1:45
(Case 5) are very similar. Some differences occur only in the middle of the channel
for larger velocity iso-lines (see Figures 5a and 6a). The secondary flow patterns
for these two cases are also very similar. The most intensive secondary flow oc-
curs for the ellipse narrowed in z-direction (Case 4), Qmax = 1.26 cm/s. When l 0

z
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grows and reaches 1.45 l 0
y (wide ellipse), the intensity Qmax decreases to 1 cm/s.

In order to explain this result, let us consider any point located in the area above

the inclined (45Ž/ wall for these two cases. At this point both ly and lz have the

same values and equal approximately to 0.5(l 0
y C l 0

z). Now, if l 0
z grows from 0.67 l 0

y

to 1.45 l 0
y , both mixing lengths ly and lz in GCS grow from 0.835 l 0

y to 1.225 l 0
y . It

results in the growth of the effective viscosity (see Eq. 7) as well as the additional

viscosity (see x–momentum equation) in both transversal equations.

The mixed components of MLT l2
yz , describing additional viscosity, vanish for

l 0
z D l 0

y , and then increase for two remaining cases (l 0
z equals to 0.67 l 0

y and 1.45 l 0
y ).

This dynamics of additional viscosity is a plausible reason for changes in pressure

gradient from 2.8 to –3.1, and then to 3.9 as l 0
z goes up from 0.67 l 0

y via 1 l 0
y

to 1.45 l 0
y . The prime velocity distribution is about the same since the ratio of

transversal viscosities has not changed. At a point in the main channel (in the

area over the horizontal bed) the ratio of lateral eddy viscosities for cases 1 and

3 is equal to 0:85 : 1:25. This is the reason for some differences in the prime

velocity distributions in the main channel.

A general conclusion can be stated based on the results of numerical simula-

tions. The choosing of the main components of the MLT defines both the prime

and secondary flow velocity distributions. The concept of MLH is very well known

among civil engineers, then the 3D case of this hypothesis can be used by them

without any problem. This 3D hypothesis is especially good for wide-open chan-

nels and rather simple cross sections. The reason is that only for these channels

can one formulate the sub-models for the normal and shear turbulent stresses

correctly.

7. Summary and Conclusions

1. The presented turbulence model takes into account differences between

various components of the turbulent stress tensor. Contrary to the other

models incorporating differential or algebraic equations for individual Reyn-

olds stresses, it is fairly simple. It consists of two sub-models for shear and

normal turbulent stresses.

2. The model is open, i.e., it allows us to use other sub-models for shear

and normal turbulent stresses. The proposed sub-models take into account

anisotropy in distributions of shear and normal turbulent stresses in open

channel flows. They describe the streamwise velocity distribution in the com-

pound channel flows with suitable accuracy for engineering applications. In

case of a very sharp junction between the main channel and the flood plane

or narrow channels it does not produce the proper velocity contour in the

sub-surface layer. The sub-models allow obtaining of secondary motion gen-

erated by the turbulent shear stresses and normal stresses in open channel



A Turbulence Model for 3-D Flows with Anisotropic Structure of Turbulence 319

flows. They give secondary flow patterns similar to those shown in mono-
graphs.

3. The numerical simulations show the possibilities of creating the prime velo-
city contours as well as the secondary flow patterns by changing the structure
of the mixing length tensor. There is one limitation; the model gives the loc-
ation of Umax at the water surface that is not usually true in some real open
channels. This behaviour may be connected with the boundary conditions
at the water surface or insufficient accuracy of the distributions of normal
and shear Reynolds stresses in the surface sub-layer adopted in this study.

4. The model is very simple and easy to calibrate. It is particularly simple for
channels with vertical sidewalls. For these channels all non-diagonal mixing
length components in the global coordinate system are zeros. The calibra-
tion procedures need some information on turbulence structure of flows,
especially the data on turbulence intensities and the structure of turbulent
eddies. Today, these data are available only for simple flows but not for such
complex flows as those in compound channels. The simple version of the
model, using the spherical mixing length tensor, does not need any calib-
ration procedure. Only the friction velocity and some flow parameters are
needed.
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