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Summary 
Vibration response of rotating machines is typically mixed and corrupted by a variety of 

interfering sources and noise, leading to the necessity for the isolation of the useful signal 
components. A relevant frequently encountered industrial case is the need for the separation of the 
vibration responses of the same type of bearings inside the same machine. For this purpose, a Blind 
Source Separation procedure is applied, based on the maximization of the information transferred in 
a neural network structure. As has been proven, this approach is quite effective in separating signals 
with super-Gaussian distributions, as it is the case of the vibration response of defective rolling 
element bearings. The role of the non-linear sigmoid function used in the neural network of the 
method is discussed and the Kullback-Leibler information divergence is considered as a tool to adapt 
this non-linearity to the bearing distributions considered. The effectiveness of the method is 
demonstrated in an experimental application, where a class of optimum non-linear functions is 
compared to the classical logistic function.  
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ZASTOSOWANIE ZAAWANSOWANYCH METOD ANALIZY SYGNA U W WYKRYWANIU 

USZKODZE  ELEMENTÓW TOCZNYCH O YSK 
 

Streszczenie 
Sygna  drganiowy maszyn wiruj cych jest zazwyczaj zak ócony przez interferuj ce z nim sygna y 

innych róde  oraz zak ócenia, co prowadzi do potrzeby ekstrachowania u ytecznych sk adowych 
takiego sygna u. Cz sto spotykanym w praktyce przemys owej przypadkiem jest potrzeba separacji 
sygna ów drganiowych pochodz cych od o ysk tego samego typu znajduj cych si  w tej samej 
maszynie. Do tego celu zastosowano procedur  lepej separacji sygna ów wykorzystuj c  
maksymalizacj  informacji przenoszonej przez struktur  sieci neuronowej. Zosta o udowodnione, e 
w przypadku analizy sygna u wibroakustycznego generowanego przez uszkodzony element o yska 
tocznego, takie podej cie do separacji sygna ów mo e by  efektywne przy za o eniu ich super-
gaussowskiego rozk adu. 

Rozwa ono mo liwo  adaptacji nieliniowej funkcji sigmoidalnej i dywergencji informacji 
Kullback-Leibler’a jako narz dzi wykrywania nieliniowo ci w sygna ach. W celu dostosowania 
nieliniowo ci do rozk adów sygna ów o ysk wykorzystywano nieliniow  funkcj  sigmoidaln  oraz 
rozbie no  informacji Kullback-Leibler'a. Efektywno  przedstawionej metody zosta a 
zaprezentowana na przyk adzie, w którym klasa optymalnych nieliniowych funkcji jest porównywana 
z klasycznymi funkcj  logistyczn .  

 
S owa kluczowe: diagnostyka o ysk, lepa separacja sygna ów, sieci neuronowe. 

 
 
INTRODUCTION

 
Although condition monitoring and fault 
diagnosis of rotating machines based on their 
vibratory and acoustical response has emerged to 
a dominating industrial practice, many practical 
problems are still encountered, since the vibration 
and especially the acoustical response is usually 

corrupted by other interfering sources and noise. 
In this case, methods for the decomposition of the 
measured signals into a number of independent 
components are quite important, so that the 
individual signal sources can be analyzed 
separately.  In source separation the problem is to 
recover a set of independent sources when only
a set of measurements are available, in which the
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sources have been mixed by an unknown channel 
(Blind Source Separation, BSS). The Blind Source 
Separation methods first emerged as an extension to 
the well-known Principal Component Analysis 
(PCA) by Comon [1]. In this approach, first, PCA is 
used to achieve independence up to second-order 
statistics, and then higher order cumulants are 
calculated, such as the third and fourth order 
cumulants. 

Since then, several other alternative procedures 
have been proposed [2-9]. Due to their effectiveness 
and generality, BSS approaches have found in the 
recent years a number of applications in rotating 
machinery condition monitoring [9-14].   

In this paper, the problem of separating vibration 
signals generated by defective rolling element 
bearings under simultaneous defects, especially of 
the same type mounted inside the same machine, is 
addressed, using the infomax algorithm, proposed by 
Bell-Sejnowski [3] . This method results to an 
unsupervised learning algorithm, based on entropy 
maximization in a single-layer feed forward neural 
network.  

First, the basic theoretical principles of the 
method applied in this paper, are briefly reviewed. 
Then, the role of the non-linear sigmoid function 
used in the neural network is discussed and the 
Kullback-Leibler information divergence is 
considered as a tool to adapt this non-linearity to the 
bearing distributions considered. Finally, a class of 
optimum non-linear functions is compared to the 
classical logistic function in an experimental 
application.  

1. REVIEW OF BASIC THEORETICAL

CONCEPTS

 
The simplest BSS model involves N unknown, 

statistically independent source signals si(t), i=1,N, 
which are assumed to be instantaneously mixed by 
an unknown linear NxN matrix A, resulting to N 
observation (measured) signals xi(t), i=1,N: 
 x(t)=As(t)  (1) 

  s(t)=[s1(t), … , sN(t)]T 
 

 (2)  

 x(t)=[x1(t), … , xN(t)]T 
  (3) 

 
The goal of the Blind Source Separation in this 

case is to find a linear NxN separating matrix W 
without any prior knowledge of the matrix A and the 
probability distribution of the source signals s(t), 
such that the components of the reconstructed 
signals: 

 
 u(t)=Wx(t)   (4) 

   u(t)=[u1(t), … , uN(t)] T
 (5) 

 
are mutually independent and approximate as close 
as possible the source signals s(t). 

The source separation criterion focuses on 
finding the spatial diversity of the measured signals 
x(t).  Since the distribution of a sum of independent 
random variables tends towards to a more Gaussian 

distribution than any of the original random 
variables, the goal of the BSS methods is to find a 
way to maximize the nongaussianity of W.x(t), in 
order to extract each one of the independent 
components. As a consequence, the sources, except 
one, must be non-Gaussian.  

In order to measure the the nongaussianity of the 
signals in Eq (4), several methods theoretically 
equivalent have been proposed [8], such as higher 
order statistics (e.g. kyrtosis), negentropy (including 
simplified approximations of it), mutual information, 
maximimum likelihood, etc. The BSS method 
proposed by Bell and Sejnowski [3], presented 
graphically in Fig. 1, maximizes the mutual 
information I(y,x) that the output y of a neural 
network contains about its input x: 

 
 I(y,x)=H(y)-H(y/x)  (6) 

 
where H(y) is the entropy of the output, the 
conditional entropy H(y|x) is the amount of the 
entropy contained in the output which is not derived 
by the input, and g() is the nonlinear sigmoid 
function used in the neural network: 
 
 y=g(Wx+w0)   (7) 

 

The method results to a self-organizing algorithm 
which, in the case of the assymetric generalized 
logistic sigmoid [3],  
 
 y’=dy/du=yp(1-y)r  (8) 

 
updates the weights of the neural network (elements 
of the unmixing matrix W) according to the 
following rules: 
 
 W  [WT]-1+p(1-2y)xT (9) 

 w0  p(1-2y) (10) 

Fig. 1. Block diagram of Bell-Sejnowski approach 
[3] to BSS 

 
The effectiveness of the method lies is the fact 

that when the inputs are processed by a sigmoid 
function, maximum information transmission is 
achieved when the slopping part of the sigmoid is 
optimally lined up with the high density parts of the 
inputs. Thus, the approach converges when the high 
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density part of the probability density function of the 
input data x is aligned with the highly sloping parts 
of the function g(x), and the slope of g(x) is matched 
to the variance of x. Hence, the sigmoid function 
g(x) should be monotonically increasing, must have 
sloping sections and should be adapted to fit the 
data.  

 
2. EFFECT OF THE  SIGMOID FUNCTION 

 
The typical probability density functions of the 

vibratory response of defective bearings are sharply 
peaked and have long tails. It is well known [15] that 
the kurtosis of these probability density functions is 
greater than zero and thus, they are classified as 
super-Gaussian. Hence, proper forms of non-
linearities have to be additionally evaluated in this 
specific problem.  

One way to do this, is to adapt the flexible 
sigmoid described by the differential equation (8), as 
close as possible, the distribution of the input signals 
emitted by defective bearings.    The integration of 
Eq. (8) for various coefficients p and r produces a 
series of sigmoid functions, which can be suitable 
for the input cumulative distributions. The values of 
the coefficients p and r, which are subsequently 
considered to be equal since no skew is allowed in 
the distributions, are chosen via an optimization 
process.  

For this reason, it is necessary to use 
a performance measure, which will be minimized. 
Such a suitable measure is the Kullback-Leibler 
information divergence, used to estimate a pseudo-
distance among the stimulus’ pdf and the slope of 
the sigmoid. The Kullback-Leibler information 
divergence represents the relative entropy and can be 
expressed by the following equation,  

 
 KLD( px // py )=  px(s) log[px(s)/py(s)] ds (11) 

 
where px is the stimulus’ statistical distribution and 
py is the slope produced by the chosen sigmoid. The 
smaller the relative entropy, the more similar the 
distribution of the two variables, and conversely. 
Since the measure is asymmetrical, the difference 
between KLD(px//py) and KLD(py//px) is used to 
estimate the minimum mismatch measure which can 
detect if the sigmoid slope fits the bearing vibration 
distributions.  

3. EXPERIMENTAL APPLICATION

 
A characteristic case of two defective rolling 

element bearings of the same type with an outer and 
inner race fault respectively, mounted on the same 
shaft, is examined. The measurements were 
conducted on a machine fault simulator carrying a ½ 
HP DC motor whose rotation speed could be varied 
up to 4,000 rpm. The DC motor rotates via belt a 
rotor whose platform is fixed on the motor base. The 
rotor structure consists of a shaft, two bearings of 

SKF 7303 BEP type, and two rotor disks. The 
laboratory test bench is indicated in Fig. 2. 

The measuring device is based on a Pentium 
II/266 MHz portable computer, equipped with a 
PCMCIA 6024E data acquisition card. Two 
accelerometers are mounted vertically on the top of 
the bearing housings A and B respectively (Fig. 2). 
Parallel, two B&K accelerometers, are mounted 
vertically on the points C and D of the motor base. 
All the measured signals were recorded 
simultaneously by the accelerometers on the points 
A, B, C and D. Each measured signal is 8,192 
samples long and recorded with sampling rate of 10 
KHz. The shaft rotation speed during the 
measurement was around 2,125 rpm (=35.4 Hz). 

 

 

Fig. 2. Sketch of the test bench and the measurement 
points 

The monitored bearing in the housing B 
corresponds to an outer race fault. The characteristic 
defect frequency is estimated to 3.47 times the shaft 
rotation speed, leading to a theoretical estimation of 
the BPFO frequency around 123 Hz. The measured 
bearing defect frequency BPFO is equal to 112.30 
Hz. The envelope analysis of the measured signal is 
presented in figure 3(a), confirming a typical bearing 
outer race fault. 

The kurtosis of the signal, acquired by the sensor 
mounted on position B, is equal to 0.7 and its pdf is 
illustrated in figure 4(a). The signal can be classified 
as super-Gaussian due to the fact that the kurtosis is 
greater than zero. 

Furthermore, an inner race wear has artificially 
introduced at the monitored bearing in the housing 
A. The theoretical estimation of the characteristic 
defect frequency BPFI is evaluated to 5.53 times the 
shaft rotation speed, leading to a value around 196 
Hz. 
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Fig. 3. Envelope analysis of (a) the first 
source signal measured on B with an outer 
race fault and (b) the second source signal 

measured on A with an inner race fault 
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Fig. 4. Probability density functions (pdf) of the 
source signals measured on positions (a) B and (b) A 

 
The spectrum of the envelope of the second 

source signal, shown in figure 3(b), is characterized 
by two spectral line families: a) the shaft rotational 
frequency component and its harmonics, and b) the 
defect frequency BPFI (=205.00 Hz) and its second 
harmonic. The presence of the bearing inner race 
defect frequency (BPFI), the shaft speed frequency 
and their harmonics reveals and confirms the inner 
race fault. 

This measured signal can be characterized as 
super-Gaussian, since its kurtosis is equal to 2.3. The 
pdf plot of the signal is shown in figure 4(b). 

It should be clarified that the above signals were 
measured as close as possible on each source in 
order to be used as an priori knowledge about the 
sources.  

The source separation procedure can be viewed 
as a pre-processing step that improves the diagnosis 
in the case where we cannot obtain measurements 
close enough to the bearings of the same type that 
are mounted inside the same machine, or even on the 
same shaft. According to this scenario, two 
accelerometers are placed on the points C and D on 
the motor platform and measure mixtures of all the 
sources. Hence, the contribution of each damaged 
bearing is received by each sensor.  

Figure 5 displays the spectra of the envelopes 
observed signals. Not any specific filtering 
procedure is used in the demodulation process. The 
interpretation of the frequency domains produced by 
the demodulation process is indeterminate. Thus, it 
is impossible to detect and distinguish the type of 
damage of each individual bearing, since both 
bearings are of the same type and mounted on the 
same shaft. The defect frequencies BPFO and BPFI 
and other frequency components, such as shaft 
rotation speed and its harmonics, govern both 
frequency domains. 
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Fig. 5. Envelope analysis of (a) the first 
observed signal measured on point C and (b) 

the second observed signal measured  
on point D 

 

Additionally, the kurtosis of the observations 
measured by the accelerometers on positions C and 
D are equal to 1.2 and 0.6, respectively. Both signals 
are classified as super-Gaussian.  

Then, the measured signals are processed by the 
proposed BSS approach using the logistic transfer 
function. The unmixed signals produced by the 
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source separation process are post-processed using 
envelope analysis. 

The spectrum produced by the demodulation 
process of the second unmixed signal [fig. 6(b)] is 
governed by the defect frequency BPFO and its 
harmonics. Thus, it is clear that the bearing in the 
housing B has a defect in the outer race. The 
envelope analysis of the other unmixed signal [fig. 
6(a)] is dominated by the shaft speed frequency, the 
defect frequency BPFI and their harmonics.  

 

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

Hz

G
's
rm
s

1
x

2
x

B
P
F
I

+
1
x

-
1
x

2
B
P
F
I

+
1
x-

1
x

 
(a) 

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

Hz

G
's
rm
s B

P
F
O

2
B
P
F
O

3
B
P
F
O

4
B
P
F
O

5
B
P
F
O

 
(b) 

 
Fig. 6. Envelope analysis of (a) the first 

unmixed signal and (b) the second unmixed 
signal 

 
Thus, the method using the logistic function is 

able to separate the source signals in a set of mixed 
observations. 

Then, the Kullback-Leibler information 
divergence algorithm is used to detect the optimum 
non-linearity that can approximate the cumulative 
distributions of both source signals. 

The optimum form of the non-linearity has to be 
selected for this specific application in order to 
validate if the algorithm can work more 
trustworthily and effectively. The coefficient p is 
estimated equal to 22.  

Figure 7 illustrates the pseudo-distance among 
the distributions of the source signals and the slope 
produced by the optimum non-linearity. Then the 
neural network using this non-linearity, which has 
been constructed for p=22, tries to align its sigmoid 
function to the stimulus’ pdf. 

The results of the output of the algorithm for this 
optimum non-linearity are similar to the ones, where 
the sigmoid was the logistic function. Additionally, 
the Bell-Sejnowski algorithm has been implemented 
for several coefficients p, but the results remained 
unaltered. 
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Fig. 7. Probability Density Functions of the 
source signals (solid line) and slope of the 
resulting optimal sigmoid (dotted line) for 
p=21. (a) First source signal, (b) Second 

source signal 
 

CONCLUSION

 
The applied infomax algorithm addressed 

successfully the problem of separating simultaneous 
fault signals generated by defective rolling element 
bearings in the experimental application. This is due 
to the fact that the matching neurons used, are able 
to cope to the super-Gaussian distributions of the 
measured signals. As additionally concluded from 
the experimental results, some further enhancements 
to the method are useful, in order to compensate 
certain effects of the transmission path. For example, 
although enveloping has been successfully applied 
in this case, other alternative procedures could be 
also followed, such as the usage of BSS methods 
based on a more complex mixing model. 
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