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Abstract

In the paper there are discussed issues concerning ill-posed problems. Mathematical definition and 

a method of detecting ill-posed problems as well as a method of improving such problems 

conditioning by the use of the Tikhonov regularisation are presented.  The results of transfer 

function noise reduction by the use of the Tikhonov regularisation method are shown.  
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ZASTOSOWANIE METOD REGULARYZACJI W ANALIZIE DYNAMIKI KONSTRUKCJI  

Streszczenie

W pracy omówiono zagadnienia dotycz ce zagadnie le zdefiniowanych. Przedstawiono 

definicj  matematyczn , metod  wykrywania zagadnie le zdefiniowanych oraz metod

poprawiania uwarunkowania tych zagadnie  przy u yciu regularyzacji Tikhonova. 

Zaprezentowano  równie  mo liwo  zastosowania metody regularyzacji Tikhonova do redukcji 

szumów widmowych funkcji przej cia.

S owa kluczowe: zagadnienie le zdefiniowane, macierz le uwarunkowana, regularyzacja 

1. INTRODUCTION 

 For many years ill-posed problems were treated 

as a mathematical curiosity. The first mathematical 

description was proposed by Hadamard in 1915. In 

1977 N. Tikhonov and V. Y. Arsenin proved that the 

class of ill-posed problems includes many classical 

mathematical problems and, what is more important, 

that such problems find practical applications. 

Nowadays, for the purposes of identification of 

complex mechanical structures, the methods of 

inverse identification are frequently used. 

Determining an inverse problem solution is 

complicated by the fact that measurement 

characteristics are always burdened with a variety of 

errors. In case of ill-posed problems even small 

errors of measured system responses have a great 

influence on accuracy of estimated parameters. 

Estimation of  a correct solution is impossible 

without earlier improvement of problem 

formulation. Therefore regularisation as a method of 

ill-defined problems effective solving arouse great 

interest.  

In this paper the application of the Tikhonov 

regularisation method to transfer function noise 

reduction is discussed. The noise reduction of 

transfer functions on the basis of which the modal 

models are estimated results in increase in the 

parameters accuracy of these models. It is especially 

important in case of diagnosing structure state on the 

basis of changes in the modal parameters such as 

natural frequencies, modal damping factors and 

system mode shapes [4].  

2. MATHEMATICAL DESCRIPTION OF 

ILL–POSED PROBLEMS 

 According to the Hadamard definition, the 

equation: 

YXAyxA   (1) :

is well–posed provided: 

1. solution existence for each {y} Y, {x} X

such that [A]{x} = {y},

2. uniqueness: [A]{x1} = [A]{x2}   {x1} = {x2},

3. stability: [A]-1 is continuous. 

Equation (1) is ill–posed if one of the above 

conditions is not met. 

3. IDENTIFICATION METHODS OF ILL – 

POSED PROBLEMS 

 The SVD method is the most popular method 

that allows for identification of ill–posed problems. 

Singular values resulting from the SVD 

decomposition of a system matrix [A]  Rmxn (m
n) are described by the equation [1]:  

T
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   (2) 

where:  [U], [V]: orthonormal matrixes of singular 

vectors: [U]T[U] = [V]T[V] = [I]n,
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: diagonal matrix 

such that: 1  … n  0, i: singular value of [A] 

matrix; {vi}, {ui}: right and left singular vector of 

[A] matrix. 

A system matrix [A] of a discrete ill-posed problem 

is always ill-conditioned. In such a case a  

determinant of the [A] matrix is close to zero, which 

means that the [A] matrix is almost rank-deficient. 

The  SVD decomposition of such an ill-conditioned 

matrix has the following properties [3]: 

singular values i gradually decay to zero,

along with the increase in i index, in the {vi},

{ui} vectors more changes in signs of elements 

are observed, 

 [A] matrix condition number is high (the 

highest to smallest singular value ratio > 1014).

4. REGULARISATION 

 As a regularisation we understand an 

improvement of a problem posedness or, in a 

discrete case, of a system matrix [A] conditioning. 

From the mathematical point of view, the method 

idea is to estimate approximate inverse operator [R ]

which, under the condition that: 

0nnrealn xAy        (3) 

satisfies the equation: 

          (4) 
truennn xyRx

4.1. Tikhonov regularisation method  

 Measured response of a real system (1) is 

described by the equation: 

idealsz yxAyxA     (5)

where: {ysz}
1nR : measured noisy system 

response; : noise; : system 

matrix; : unknown solution; n, m: 

integers. 

1nR mnRA
1mRx

Numerical solution of the least squares method, 

which is commonly used for solving algebraical 

equations, is unique and unbiased only when the [A] 

matrix rank equals m. Therefore an ill-posed 

problem solution obtained by the use of the least 

squares method: 
2

2
minarg xAyx sz
x

ls
  (5) 

is unstable – the more noisy is the measurement data 

the more obtained solution differs from the correct 

one. Modification of the equation of interest by 

replacing the [A] matrix with a well-conditioned 

matrix as well as introducing additional constraints: 

do not guarantee obtaining correct solutions. 

Determining a correct solution by the use of an 

inverse method is usually impossible without earlier 

improvement of problem formulation (system matrix 

conditioning). In case of the Tikhonov regularisation 

method, an unknown solution has a form of [3]:
2

2

22

2
minarg xLxAyx sz
x

 (6) 

where: : regularisation parameter describing a 

compromise between an accurate fitting and a 

smoothness of the obtained curve; [L]: usually a unit  

matrix; [I]: unit matrix. 

 The L-curve is the most popular method of 

determining an optimal regularisation parameter 

[2].  

log||y-Cx||
2

Fig. 1. L-curve method 

2
Lxlog

The L-curve method [2, 3] consists in determining a 

graphical dependence between 
2

2
xAysz

and

2

2
xL  for all the possible  values in a 

logarithmic scale (Fig. 1). The optimal value of the 

regularisation parameter opt corresponds to the 

coordinates of the L-curve corner. If  < opt then the 

solution is close to a solution obtained by the use of 

the least squares method. Assumption of  > opt

leads to a solution of an equation that differs 

significantly from the original one. 

4.2. Tikhonov regularisation as a filtration 

method

 On the basis of the equation (2), an inverse 

operator value R can be determined according to the 

formula: 
TTT

UAIAAR
1

   (7) 

so:
TTTTT

VVIVVUUVR
1_  (8)

therefore:
TTT
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1_

  (10) 

or: 

T
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1

2
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  (11) 

Expression: 
n

i

i

i ILforsw
2

2

2  is 

called a Tikhonov filter function. If  0 then 
2

iw  1 so [R ] T

i UsdiagV
1 .

The Tikhonov filter function performance consists in 

filtering out small singular values ( i< ).
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4.3. Application of Tikhonov regularisation to 

noise reduction 

 Seven-degree-of-freedom discrete system was 

considered (Fig. 3).

M6 M7

M5

M2 M3 M4

M1

Fig.3. Scheme of a considered system 

Physical system parameters are as follows: M1 = 5 

[kg], M2 = M3 = M4 = 1 [kg], M5 = 4, M6 = M7 = 2 

[kg], c01 = 12 [Ns/m], c12 = c13 = c14 = c25 = c35 = c45 =

5 [Ns/m], c56 = c57 = 9 [Ns/m], k01 = 80000 [N/m],  

k12 = k13 = k14 = k35 = k45 = 15000 [N/m], k25 = 

14800 [N/m], k56 = k57 = 28000 [N/m]. The 

following notation was assumed: kij, cij – values of 

stiffness and damping between masses Mi and Mj.

Dynamic system motion equation  has the for of: 

fxKxCxM   (9) 

where: [M], [C], [K]: mass, damping and stiffness 

matrixes. 

For a system modal model determined analytically 

the transfer functions were estimated. On this basis 

the matrix of transfer functions [H(s)] was formed: 

)()()(

)()()(

)()(

)(

21

22221

11211
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sHsHsH

sH

nnnn

n

n

(10)

where: s = j : Laplace variable, n = 1, …, 7. 

Transfer functions determined with respect to the 

mass M3 ({H31}, …, {H37}) were burdened with an 

additional zero-mean random noise of values from 

the range of   10 % maximal amplitude value of 

transfer function determined analytically. Matrix 

[H(s)] of noisy elements {H31 sz}, …, {H37 sz} was

marked as [Hsz]. 

Noisy system response {Xsz} was determined on the 

basis of the equation [4]: 

11 isziszjisz XFH    (11) 

under assumption that the force {Fsz} applied to the 

considered system has the form of: 

11,,11
17

jjFsz

T.

Taking into account (11), by the use of the Tikhonov 

regularisation method, the {Freg} force value was 

determined. On the basis of the equations: 

regregsz XFH     (12) 

the matrix of transfer functions [Hreg], obtained as a 

result of {Fsz} vector regularisation, was computed: 
1

regregreg FXH     (13)

The comparison of an example transfer function 

obtained as a result of Tikhonov regularisation and a 

transfer function determined analytically is 

presented in the Fig. 4a and Fig 4b.

[Hz] 

[Hz] 

a) 

b) 

Fig. 4. Real (a) and imaginary (b) parts  of a 

transfer functions without noise (H12: black) 

and burdened with 10% noise and regularised 

(H12 reg: grey). 

For the purposes of the further analysis, from the 

[Hreg] matrix the transfer functions ([H31 reg], …, [H37

reg]) were chosen. For such a set of characteristics the 

estimation of modal parameters was carried out by 

the use of the ERA method implemented in the 

VIOMA toolbox. 

In the Table 1 there are gathered natural frequen-

cies and modal damping factors corresponding to 

poles values estimated by the use of the ERA 

method for the set of chosen transfer functions with-

out noise, burdened with 10% noise, burdened with 

10% noise and regularised.  

Table 2 and Table 3 contain the percentage relative 

errors of estimation of natural frequencies ef and

modal damping coefficients e  for unsmoothed char-

acteristics burdened with 10% random noise as well 

as characteristics burdened with 10% random noise 

and smoothed by the use of curve smoothing 
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methods1 (MA: moving avarage, LOESS: locally 

weigthed scatter plot smooth, SG: Savitzky - Golay) 

and Tikhonov regularisation 

Table 1 

noise 0% 

(ERA)

noise 10% 

(ERA)

noise 10% 

regularisation 

(ERA)
No

f [Hz]  [%] f [Hz]  [%] f [Hz]  [%]

1. 6,641 0,59 - - 6,661 0,64 

2. 19,619 1,51 19,645 1,59 19,720 1,41 

3. 27,493 2,89 - - - - 

4. 27,555 2,89 27,529 2,89 - - 

5. 27,731 2,53 - - - - 

6. 34,414 3,50 34,407 3,43 34,421 3,40 

.

Table 2 
noise 10% 

(ERA)

noise 10%, MA, 

(ERA)

noise 10%, 

LOESS, (ERA) No 

ef [%] E ef [%] e  [%] ef [%] e  [%] 

1. - - 0,994 698,00 1,024 418,64

2. 0,132 5,298 0,005 64,238 0,025 33,775

3. - - - - 0,036 9,688 

4. 0,094 0,000 0,036 12,802 0,058 6,574 

5. - - - - - -

6. 0,020 2,000 0,017 8,571 0,020 2,857 

Table 3 

noise 10% 

(ERA)

noise 10%, SG, 

(ERA)

noise 10%, 

regularisation, 

(ERA)
No 

ef [%] E ef [%] e  [%] ef [%] e  [%] 

1. - - 0,994 698,00 0,300 8,475 

2. 0,132 5,298 0,005 64,238 0,515 6,622 

3. - - 0,236 12,803 - - 

4. 0,094 0,000 0,127 25,605 - - 

5. - - - - - -

6. 0,020 2,000 0,017 8,571 0,020 2,857 

In the considered case percentage relative errors ef

for the Tikhonov regularisation method are 

comparable to the errors determined for the other 

curve smoothing (MA, LOESS, SG) methods. 

Percentage relative errors e  are the smallest for the 

Tikhonov regularisation method in the whole 

estimation band; the most noticeable differences are 

observed for the low frequency band.  

The Table 4 contains MAC coefficients for the mode 

shapes corresponding to the system poles from the 

Table 1. The MAC values for the mode shapes 1,

2, 6 estimated for the noisy characteristics 

smoothed by 

the use of the MA, LOESS, SG and Tikhonova 

regularisation methods approach unity while for the 

3, 5 are low. 

1 The most popular application of curve smoothing 

methods is a data noise reduction.   

Table 4 

No
noise

10%  

noise

10%, 

MA

noise

10%, 

LOES 

noise

10% 

SG

noise

10% 

regulari

sation

1. - 0,9936 0,9910 0,9945 0,9477 

2. 0,9949 0,9962 0,9965 0,9958 0,8331 

3. - - 0,2593 0,2681 - 

4. 0,7431 0,7403 0,7348 0,7384 - 

5. - - - - -

6. 0,9989 0,9990 0,9989 0,9984    0,8506

4.4. Conclusions 

Application of the Tikhonova regularization to 

the noisy transfer functions resulted in improvement 

of  estimated poles quality. Percentage relative errors 

of estimated natural frequencies and modal damping 

coefficients are significantly lower (especially in the 

low frequency band ) than in case of noise reduction 

by the use of curve smoothing methods.  
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