PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Kummer confluent hypergeometric function and some of its applications in the theory of azimuthally magnetized circular ferrite waveguides

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Examples of the application of the confluent hypergeometric functions in miscellaneous areas of the theoretical physics are presented. It is suggested these functions to be utilized as a universal means for solution of a large number of problems, leading to: cylindrical, incomplete gamma, Coulomb wave, Airy, Kelvin, Bateman, Weber's parabolic cylinder, logarithmic-integral and exponential integral functions, generalized Laguerre, Poisson-Charlier and Hermit polynomials, integral sine and cosine, Fresnel and probability integrals, etc. (whose complete list is given), which are their special cases. The employment of such an approach would permit to develop general methods for integration of these tasks, to generalize results of different directions of physics and to find the common features of various phenomena, governed by equations, pertaining to the same family. Emphasis is placed here on the use of the Kummer function in the field of microwaves: the cases of normal and slow rotationally symmetric TE modes propagation in the azimuthally magnetized circular ferrite waveguide are considered. Lemmas on the properties of the argument, real and imaginary parts, and positive purely imaginary (real) zeros of the function mentioned in the complex (real) domain, of importance in the solution of boundary-value problem stated for normal (slow) waves, are substantiated analytically or numerically. A theorem for the identity of positive purely imaginary and real zeros of the complex respectively real Kummer function for certain parameters, is proved numerically. Tables and graphs support the results established. The terms for wave transmission are obtained as four bilaterally open intervals of variation of the quantities, specifying the fields. It turns out that the normal (slow) modes may exist in one (two) region(s). The theoretically predicted phase curves for the first waves of the two TE sets examined show that the structure explored is suitable for ferrite control components design.
Rocznik
Tom
Strony
112--128
Opis fizyczny
Bibliogr. 89 poz., tab., il.
Twórcy
  • Faculty of Mathematics and Informatics, University of Veliko Tirnovo "St. St. Cyril and Methodius", BG-5000 Veliko Tirnovo, Bulgaria
  • Meterstrasse 4/2 D-70839 Gerlingen, Germany
Bibliografia
  • [1] F. G. Tricomi, “Sulle funzioni ipergeometriche confluenti”, Ann. Math. Pura Appl., vol. 36, no. 4, pp. 141–175, 1947.
  • [2] F. G. Tricomi, Lezioni sulle Funzioni Ipergeometriche Confluenti. Torino: Editore Gheroni, 1952.
  • [3] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Bateman project, vol. I, II. New York, Toronto, London: McGraw-Hill, 1953.
  • [4] F. G. Tricomi, Equazioni Differenziali. Torino: Edizioni Scientifiche Einaudi, 1953.
  • [5] H. Buchholz, Die Konfluente Hypergeometrische Funktion mit Besonderer Berücksichtigung Ihrer Anwendungen. Berlin, Göttingen, Heidelberg: Springer-Verlag, 1953.
  • [6] Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics. Part I. New York: McGraw-Hill, 1953.
  • [7] F. G. Tricomi, Funzioni Ipergeometriche Confluenti. Rome: Edizioni Cremonese, 1954.
  • [8] E. L. Ince, Ordinary Differential Equations. New York: Dover Publications, 1956.
  • [9] F. G. Tricomi, Fonctions Hypergéométriques Confluentes. Paris: Gauthier-Villars, 1960.
  • [10] L. J. Slater, Confluent Hypergeometric Functions. Cambridge: Cambridge University Press, 1960.
  • [11] E. Janke, F. Emde, and F. Lösch, Tafeln Höherer Funktionen. Stuttgart: B.G. Teubner Verlagsgesellschaft, 1960.
  • [12] N. N. Lebedev, Special Functions and Their Applications. Moscow, Leningrad: State Publishing House of Physical and Mathematical Literature, 1963 (in Russian).
  • [13] Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. M. Abramowitz and I. Stegun, Eds. Applied Mathematics, Series 55. Washington: National Bureau of Standards, 1964.
  • [14] M. I. Zhurina and L. N. Osipova, Tables of the Confluent Hypergeometric Function. Moscow: Computational Center of the Academy of Sciences of USSR, 1964 (in Russian).
  • [15] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. Cambridge: Cambridge University Press, 1965.
  • [16] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics. Berlin, Heidelberg, New York: Springer-Verlag, 1966.
  • [17] A. R. Curtis, Coulomb Wave Functions. Moscow: Computational Center of the Academy of Sciences of USSR, 1969 (in Russian).
  • [18] L. N. Osipova, Tables of the Confluent Hypergeometric Function of the Second Kind. Moscow: Computational Center of the Academy of Sciences of USSR, 1972 (in Russian).
  • [19] E. Kamke, Handbook of Ordinary Differential Equations. Moscow: Nauka, 1976 (in Russian).
  • [20] S. Flügge, Rechenmethoden der Quantentheorie. Teil 1: Elementare Quantenmechanik. Band 53 der Grundlehren der mathematischen Wissenschaften, Berlin, 1947.
  • [21] L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Nonrelativistic Theory. Moscow: Nauka, 1974 (in Russian).
  • [22] A. Sommerfeld, Atombau und Spektrallinien. Band II, Braunschweig, 1951.
  • [23] J. Formánek: Úvod do Kvantové Teorie. Prague: Academia, 1983.
  • [24] R. E. Collin, Foundations of Microwave Engineering. New York, Toronto, London: Mc-Graw-Hill, 1966.
  • [25] A. E. Siegman, Microwave Solid-State Masers. New York, Toronto, London: Mc-Graw-Hill, 1964.
  • [26] R. Gran Olsson, “Biegung kreisformigen Platten von radial verändlicher Dicke”, Ingenieur-Arch., vol. 8, pp. 81–98, 1937.
  • [27] G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press, 1966.
  • [28] H. Buchholz, “Die Ausbreitung von Schallwellen in einem Horn von der Gestalt eines Rotationsparaboloids bei Anregung durch eine im Brennpunkt gelegene punktformige Schallquelle”, Ann. Phys., vol. 42, pp. 423–460, 1943.
  • [29] A. Erdélyi, “Inhomogene Saiten mit parabolischer Dichteverteilung”, S.-B. Akad. Wiss. Wien, Math.-Phys., Kl. IIa, vol. 146, pp. 431–467, 1937.
  • [30] H. A. Lauwerier, “The use of confluent hypergeometric functions in mathematical physics and the solution of an eigenvalue problem”, Appl. Sci. Res., vol. A2, pp. 184–204, 1950.
  • [31] W. Magnus, “Zur Theorie des zylindrisch-parabolischen Spiegels”, Z. Phys., vol. 11, pp. 343–356, 1941.
  • [32] M. Hashimoto, S. Nemoto, and T. Makimoto, “Analysis of guided waves along the cladded optical fiber: paraboloc-index core and homogeneous cladding”, IEEE Trans. Microw. Theory Techn., vol. MTT-25, no. 1, pp. 11–17, 1977.
  • [33] J.-D. Decotignie and F. E. Gardiol, “Méthodes d’analyse de la propagation dans les fibres optiques”, Bulletin ASE/UCS, vol. 70, no. 15, pp. 830–837, 1979.
  • [34] M. Hashimoto, “Asymptotic theory of vector modes in inhomogeneous optical fibres: uncladded fibres”, Proc. Inst. Elec. Eng., Pt. H (Microwaves, Optics and Antennas), vol. 130, no. 4, pp. 261–275, 1983.
  • [35] R. G. Mirimanov, “Solution of a diffraction problem for a plane electromagnetic wave on a rotation paraboloid of infinite dimensions in terms of Laguerre functions”, Dokl. Acad. Nauk USSR, vol. 60, no. 2, pp. 203–206, 1948.
  • [36] R. E. Collin, Field Theory of Guided Waves. New York, Toronto, London: Mc-Graw-Hill, 1960.
  • [37] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. Englewood Cliffs: Prentice-Hall, 1973, vol. 1.
  • [38] S. N. Samaddar and C. J. Lombardo, “Differential equation associated with electromagnetic waves in an inhomogeneous medium where Ñe (r) · E vanishes”, J. Franklin Inst., vol. 289, no. 6, pp. 457–468, 1970.
  • [39] S. N. Samaddar, “An approach to improve re-entry communications by suitable orientations of antenna and static magnetic field”, Radio Sci., vol. 69D, no. 6, pp. 851–863, 1965.
  • [40] L. N. Bol’shev and N. V. Smirnov, Tables of Mathematical Statistics. Moscow: Nauka, 1983.
  • [41] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations. Oxford, 1946.
  • [42] W. B. Jones and W. J. Thron, Continued Fractions. Analytic Theory and Applications. Vol. 11. Encyclopedia of Mathematics and Its Applications. Reading, Massachusetts: Addison-Wesley, 1980.
  • [43] N. I. Vilenkin, Special Functions and the Theory of Group Representations. American Mathematical Society, Providence, R.I., 1968.
  • [44] E. Ya. Riekstin¸š, Asymptotics and Evaluations of Roots of Equations. Riga: Zinatne, 1991 (in Russian).
  • [45] R. Burman, “Some electromagnetic wave functions for propagation along cylindrically stratified columns”, IEEE Trans. Microw. Theory Techn., vol. MTT-16, no. 2, pp. 127–129, 1968.
  • [46] C. N. Kurtz and W. Streifer, “Guided waves in inhomogeneous focusing media”. Part I: “Formulation, solution for quadratic inhomogeneity”, IEEE Trans. Microw. Theory Techn., vol. MTT-17, no. 1, pp. 11–15, 1969.
  • [47] R. Yamada and Y. Inabe, “Guided waves along graded index dielectric rod”, IEEE Trans. Microw. Theory Techn., vol. MTT-22, no. 8, pp. 813–814, 1974.
  • [48] O. Parriaux, “Propagation d’ondes éléctromagnetiques guidées dans des structures `a symétrie cylindrique circulaire”. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 1975.
  • [49] H. Suhl and L. R. Walker, “Topics in guided wave propagation through gyromagnetic media.” Part II. “Transverse magnetization and the non-reciprocal helix”, Bell System Tech. J., vol. 33, no. 4, pp. 939–986, 1954.
  • [50] N. Kumagai and K. Takeuchi, “Circular electric waves propagating through the circular waveguide containing a circumferentially magnetized ferrite cylinder”, IRE Wescon Convention Record, Part I, pp. 123–130, 1958.
  • [51] A. L. Mikaelyan, Theory and Application of Ferrites at Microwaves, Moscow, Leningrad: State Energetic Publ. House, 1963 (in Russian).
  • [52] M. E. Averbuch, “Difference functions for evaluation of layered azimuthally magnetized ferrite waveguides”, in Proc. V Int. Conf. Microw. Ferr., Vilnius, USSR, 1980, vol. 4, pp. 126–133 (in Russian).
  • [53] T. Obunai and K. Hakamada, “Slow surface wave propagation in an azimuthally-magnetized millimeter-wave solid-plasma coaxial waveguide”, Jap. J. Appl. Phys., vol. 23, no. 8, pp. 1032–1037, 1984.
  • [54] K. P. Ivanov and G. N. Georgiev, “Asymptotic study of rotationally symmetric waves in a circular anisotropic waveguide”, Proc. Inst. Elec. Eng., Pt. H (Microwaves, Antennas and Propagat.), vol. 132, no. 4, pp. 261–266, 1985 (special issue on microwave ferrite engineering).
  • [55] K. P. Ivanov and G. N. Georgiev, “On a class of electromagnetic wave functions for propagation along the circular gyrotropic waveguide”, IEEE Trans. Microw. Theory Techn., vol. MTT-34, no. 8, pp. 853–862, 1986.
  • [56] V. I. Miteva and K. P. Ivanov, “Nonreciprocal effects in an azimuthally magnetised millimetre-wave solid-plasma circular guide”, Electron. Lett., vol. 23, no. 3, pp. 118–120, 1987.
  • [57] G. N. Georgiev, “Rotationally symmetric waves in a circular waveguide with azimuthally magnetized remanent ferrite.” Ph.D. thesis, Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria, 1987 (in Bulgarian).
  • [58] K. P. Ivanov and G. N. Georgiev, “Kummer and Tricomi functions for analysis of circular gyrotropic waveguides with azimuthal magnetisation”, Proc. Inst. Elec. Eng., Pt. H (Microwaves, Antennas and Propagat.), vol. 135, no. 2 pp. 125–128, 1988.
  • [59] K. P. Ivanov and G. N. Georgiev, “Azimuthally magnetized circular ferrite waveguides”, in Ferrite Phase Shifters and Control Devices, J. Helszajn. London: McGraw-Hill, 1989, ch. 14, pp. 262–288.
  • [60] K. P. Ivanov and G. N. Georgiev, “Some properties of the circular waveguide with azimuthally magnetized ferrite”, J. Appl. Phys., vol. 67, no. 10, pp. 6529–6537, 1990.
  • [61] K. P. Ivanov and G. N. Georgiev, “Application of Tricomi functions in the eigenvalue analysis of the circular gyrotropic waveguide”, Eur. Trans. Telecommun. Relat. Technol. ETT, vol. 2, no. 2, pp. 259–269, 1991.
  • [62] A. A. P. Gibson, R. Sloan, L. E. Davis, and D. K. Paul, “Double valued phase constants in gyrotropic waveguides”, Proc. Inst. Elec. Eng., Pt. H (Microwaves, Antennas and Propagat.), vol. 138, no. 3, pp. 258–260, 1991.
  • [63] K. P. Ivanov, G. N. Georgiev, and M. N. Georgieva, “A simple formula for differential phase shift computation of ferrite-filled circular waveguide”, in Proc. 1992 Asia-Pacific Microw. Conf. APMC’92, Adelaide, Australia, 1992, vol. 2, pp. 769–772.
  • [64] K. P. Ivanov, G. N. Georgiev, and M. N. Georgieva, “Propagation in a circular waveguide partially filled with azimuthally magnetized ferrite”, in Proc. 1992 URSI Int. Symp. Electromagn. Theory, Sydney, Australia, 1992, pp. 167–169.
  • [65] L. E. Davis, R. Sloan, and D. K. Paul, “TM0m modes in transversely magnetised semiconductor-filled coaxial waveguide and parallel plates”, Proc. Inst. Elec. Eng., Pt. H (Microwaves, Antennas and Propagat.), vol. 140, no. 3, pp. 211–218, 1993.
  • [66] G. N. Georgiev and M. N. Georgieva-Grosse, “Formulae for differential phase shift computation in an azimuthally magnetized circular ferrite waveguide”, in Proc. Millenn. Conf. Anten. Propagat. AP-2000, Davos, Switzerland, 2000, paper 1002.
  • [67] G. N. Georgiev and M. N. Georgieva-Grosse, “Some aspects of the slow waves in the circular waveguide with azimuthally magnetized ferrite rod”, in Proc. 2002 XIth Int. Conf. Math. Meth. Electromagn. Theory MMET’02, Kiev, Ukraine, 2002, vol. 2, pp. 674–676.
  • [68] G. N. Georgiev and M. N. Georgieva-Grosse, “Some new properties of the circular waveguides with azimuthally magnetized ferrite”, in Proc. 25th ESA Anten. Worksh. Satell. Anten. Technol. ESA/ESTEC, Noordwijk, The Netherlands, 2002, pp. 601–608.
  • [69] G. N. Georgiev and M. N. Georgieva-Grosse, “Some microwave applications of the Kummer confluent hypergeometric function”, in Proc. 5th Int. Conf. Transp. Opt. Netw. ICTON 2003, Warsaw, Poland, 2003, vol. 2, pp. 14–21.
  • [70] G. N. Georgiev and M. N. Georgieva-Grosse, “Azimuthally magnetized circular ferrite phase shifter”, in Proc. 2003 ITG-Conf. Anten. INICA 2003, Berlin, Germany, 2003, pp. 115–118.
  • [71] G. N. Georgiev and M. N. Georgieva-Grosse, “Conditions for phaser operation of the circular waveguides with azimuthally magnetized ferrite”, in Proc. 26th ESA Anten. Technol. Works. Satell. Anten. Modell. Des. Tools ESA/ESTEC, Noordwijk, The Netherlands, 2003, pp. 359–366.
  • [72] G. N. Georgiev and M. N. Georgieva-Grosse, “A new property of complex Kummer function and its application to waveguide propagation”, IEEE Anten. Wirel. Propagat. Lett., vol. AWPL-2, pp. 306–309, 2003.
  • [73] G. N. Georgiev and M. N. Georgieva-Grosse, “Several hypotheses in the confluent hypergeometric functions based theory of the azimuthally magnetized circular ferrite waveguides”, in Proc. East-West Worksh. Adv. Techn. Electromagn., Warsaw, Poland, 2004, pp. 197–204.
  • [74] G. N. Georgiev and M. N. Georgieva-Grosse, “Some new simple methods for differential phase shift computation in the circular waveguides with azimuthally magnetized ferrite”, in Proc. 28th ESA Anten. Worksh. Space Anten. Syst. Technol. ESA/ESTEC, Noordwijk, The Netherlands, 2005, part 2, pp. 1159–1166.
  • [75] D. M. Bolle and G. S. Heller, “Theoretical considerations on the use of circularly symmetric TE modes for digital ferrite phase shifters”, IEEE Trans. Microw. Theory Techn., vol. MTT-13, no. 4, pp. 421–426, 1965. See also D. M. Bolle and N. Mohsenian, “Correction”, IEEE Trans. Microw. Theory Techn., vol. MTT-34, no. 4, p. 427, 1986.
  • [76] P. J. B. Clarricoats and A. D. Olver, “Propagation in anisotropic radially stratified circular waveguides”, Electron. Lett., vol. 2, no. 1, pp. 37–38, 1966.
  • [77] R. R. Yurgenson and I. G. Teitel’baum, “Computation of a circular waveguide with azimuthally magnetized ferrite rod”, Antennas, vol. 1, Collection of papers, Moscow, Sviaz’, 1966, pp. 120–133 (in Russian).
  • [78] A. I. Potekhin and R. R. Yurgenson, “Computation of some microwave transmission lines with azimuthally magnetized ferrite”, Radiotekhnika i Electronika, vol. 15, no. 3, pp. 456–464, 1970 (in Russian).
  • [79] W. J. Ince and G. N. Tsandoulas, “Modal inversion in circular waveguides.” Part II. “Application to latching nonreciprocal phasers”, IEEE Trans. Microw. Theory Techn., vol. MTT-19, no. 4, pp. 393–400, 1971.
  • [80] F. J. Bernues and D. M. Bolle, “A study of modes in circular waveguide with azimuthally magnetized ferrite”, Div. of Engineering, Brown Univ., Providence, R.I., NSF Res. Grant NSF-GK 2351/1, Washington, 1971.
  • [81] S. G. Semenov, G. I. Vesselov, and N. I. Platonov, “On the solution of Maxwell equations for azimuthally magnetized gyromagnetic medium”, Radiotekhnika, vol. 27, no. 8, pp. 47–49, 1972 (in Russian).
  • [82] O. Parriaux and F. E. Gardiol, “Propagation in circular waveguide loaded with an azimuthally magnetized ferrite tube”, IEEE Trans. Microw. Theory Techn., vol. MTT-25, no. 3, pp. 221–224, 1977.
  • [83] R. S. Mueller and F. J. Rosenbaum, “Propagation along azimuthally magnetized ferrite-loaded circular waveguides”, J. Appl. Phys., vol. 48, no. 6, pp. 2601–2603, 1977.
  • [84] Y. Xu and J. Chen, “Electromagnetic waves in waveguides, containing azimuthally magnetized ferrite”, IEEE Trans. Magnet., vol. MAG-16, no. 5, pp. 1174–1176, 1980.
  • [85] G. A. Red’kin, A. E. Mudrov, and V. A. Meshcheriakov, “Phase shifter with azimuthally magnetized ferrite samples”, in Proc. Vth Int. Conf. Microw. Ferr., Vilnius, USSR, 1980, vol. 4, pp. 170–175 (in Russian).
  • [86] I. V. Lindell, “Variational methods for nonstandard eigenvalue problems in waveguide and resonator analysis”, IEEE Trans. Microw. Theory Techn., vol. MTT-30, no. 8, pp. 1194–1204, 1982.
  • [87] S. Kal and N. B. Chakraborti, “Finite-element analysis of helical phase shifters”, Proc. Inst. Elec. Eng., Pt. H (Microwaves, Antennas and Propagat.), vol. 132, no. 4, pp. 231–236, 1985 (special issue on microwave ferrite engineering).
  • [88] A. J. Baden-Fuller, Ferrites at Microwave Frequencies. IEE Electromagnetic Waves, Series 23. London: Peter Peregrinus, 1987.
  • [89] R. S. Mueller, “Microwave radiation from a magnetic dipole in an azimuthally magnetized ferrite cylinder”, IEEE Trans. Microw. Theory Techn., vol. MTT-34, no. 7, pp. 828–831, 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0027-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.