PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of temperature and aging on polarization mode dispersion of tight-buffered optical fibers and cables

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of laboratory tests investigating influence of temperature on polarization mode dispersion (PMD) in variety of single mode optical fibers and cables. Research was focused primarily on tight-buffered fibers, where most pronounced effects resulting from buffer shrinkage or expansion were expected. The goal was to verify performance of optical fiber cable exposed to extreme temperatures and to compare behavior of different cables. Very strong temperature dependence of PMD was detected in standard single mode fibers with 0.9 mm tight buffer, commonly used in indoor cables, and in complete cable with such fiber. However, both nonzero dispersion-shifted fibers, spun during drawing and optical unit used in optical ground wire (OPGW), where 12 fibers are stranded showed good stability of PMD during thermal cycling. The same optical unit extracted from OPGW exhibited excellent PMD stability also during accelerated life test.
Rocznik
Tom
Strony
96--104
Opis fizyczny
Bibliogr. 14 poz., il.
Twórcy
autor
Bibliografia
  • [1] I. Daubechies, Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
  • [2] D. L. Donoho and I. M. Johnstone, “Attempting to unknown smoothness via wavelet shrinkage”, Ann. Stat., vol. 90, pp. 1200–1224, 1998.
  • [3] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., vol. LXIX, pp. 331–371, 1910.
  • [4] B. Kozłowski, “Wavelet-based approach to time series denoising”, in Proc. Int. Conf. Decis. Supp. Telecommun. Inform. Soc. DSTIS, Warsaw, Poland, 2004, vol. 4, pp. 175–193.
  • [5] B. Kozłowski, “On time series forecasting methods of linear complexity utilizing wavelets”, in Conf. Adv. Intell. Syst. – Theory Appl., Coop. IEEE Comput. Soc., Kirchberg, Luxembourg, 2004.
  • [6] T. Li, Q. Li, S. Zhu, and M. Ogihara, “Survey on wavelet applications in data mining”, SIGKDD Expl., vol. 4, no. 2, pp. 49–68, 2003.
  • [7] S. Mallat, A Wavelet Tour of Signal Processing. New York: Academic Press, 1998.
  • [8] J. Morlet and A. Grossman, “Decomposition of hardy functions into square integrable wavelets of constant shape”, SIAM J. Math. Anal., vol. 15, no. 4 pp. 723–736, 1984.
  • [9] D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis. Cambridge: Cambridge University Press, 2000.
  • [10] L. Prasad and S. S. Iyengar, Wavelet Analysis with Applications to Image Processing. Boca Raton: CRC Press, 1997.
  • [11] P. Yu, A. Goldberg, and Z. Bi, “Time series forecasting using wavelets with predictor-corrector boundary treatment”, in 7th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., San Francisco, USA, 2001.
  • [12] “Definitions and test methods for statistical and non-linear attributes of single-mode fibre and cable”, ITU-T Rec. G.650.2 (06-2002).
  • [13] D. A. Nolan, X. Chen, and M.-J. Li, “Fibers with low polarization-mode dispersion”, J. Lightw. Technol., vol. 22, no. 4, pp. 1066–1077, 2004
  • [14] M.-J. Li, X. Chen, and D. Nolan, “Effects of residual stress on polarization mode dispersion of fibers made with different types of spinning”, Opt. Lett., vol. 29, no. 5, pp. 448–450, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0027-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.