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Abstract—The optimization flow control algorithm for traffic

control in computer networks, introduced by Steven H. Low,

works only for concave utility functions. This assumption is

rather optimistic and leads to several problems, especially

with streaming applications. In an earlier paper we intro-

duced a modification of the algorithm based on the idea of

proximal convexification. In this paper we extend this ap-

proach, replacing the proximal method with the ρ-proximal

method. The new method mixes the quadratic proximal term

with higher-order terms, achieving better results. The algo-

rithms are compared in a simple numerical experiment.

Keywords— nonlinear programming, price method, convexifica-

tion, network control.

1. Introduction

It is possible to formulate the problem of traffic control

in the Internet as an optimization problem. Many pro-

posed control methods are based on the idea of solving

such a problem using a distributed algorithm based on the

dual approach. Recently this approach was even used to

model TCP Vegas [4]. However, most of such proposals

assume convexity of the problem, eliminating the possi-

bility of a duality gap. The model is then simplified, but

not necessarily realistic. Nonconvexity, while definitely not

desireable, may be important. There are a lot of methods

for convexification of a nonconvex optimization problem,

but most of them do not correspond to the structure of the

network. In [2] we proposed a way of introducing convex-

ification in the algorithm proposed by Steven H. Low ([1]

with a correction in [5]). The method we proposed is not

the only one possible and in this paper some modifications

are suggested.

In Section 2 we describe the problem, introduce the concept

of proximal convexification and the partial convexification

algorithm for traffic control from [2]. Section 3 presents

the ρ-proximal convexification method, and Section 4 ex-

plains how it can be adapted to our problem. Finally, in

Section 5 we present some simulation results and conclude

in Section 6 with a summary.

Note: We use the term convex problems for a class of prob-

lems including both minimization of convex functions and

maximization of concave functions, both over convex sets.

Converting a problem to fit this class is therefore called

convexification. In the case of a maximization problem,

convexification means making the goal function concave

(hence the names convexification parameter and center of

convexification).

2. Optimization in traffic control

An often mentioned (e.g., [6–10]) way of dealing with the

problem of sharing network resources in the best possible

way is maximizing average (or, equivalently, total) utility,

as defined by the sources’ individual utility functions. The

optimal solution of such a problem is proportionally fair.

This approach is the essence of Steven H. Low’s optimiza-

tion flow control algorithm, presented in [1] (with a cor-

rection to the proof in [5]).

The network is modelled as a set of unidirectional links,

L with capacities cl , l ∈ L, used by a set of sources, S.

The links may also be bidirectional with the capacity limit

on the sum of traffic in both directions. Each source uses

a predefined set of links Ls (static routing), although the

model can be modified to choose from multiple paths. The

relation between sources and links defined by sets Ls can be

represented as the binary routing matrix A. Each source’s

rate xs is bounded by limits ms and Ms and derived from the

state of the network and its own utility, defined as a function

Us(xs), preferably zero for xs = ms and increasing. Utility

may be normalized (to be 1 at xs = Ms) or not. Capacities

and rates can be expressed as vectors c = [cl ]l∈L, x = [xs]s∈S.

For feasibility it is necessary that for each link the sum of

lower limits of sources using this link be lower than its ca-

pacity. To eliminate the possibility of a duality gap, strong

concavity of the utility function for each source is also

necessary. Combining both assumptions leads to certain

difficulties, explained later.

The problem in this case can be formulated as follows:

max
x∈I

∑
s∈S

Us(xs)

subject to Ax ≤ c (1)

I = X
s∈S

Is

Is = [ms, Ms]

and it can be solved by application of the dual approach.

Using prices (Lagrange multipliers) to communicate the

state of the network to sources it is possible to distribute

effectively the computations. A simple, synchronous algo-

rithm follows:
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Algorithm 1 (synchrononous gradient projection)

At times t = 1,2, . . .:

• Link (router) l:

1. Collects the rates xs of all sources using the link

(s ∈ Sl) and computes xl = ∑s∈Sl
xs.

2. Computes a new price ξl(t + 1) = [ξl(t) +
γ(xl(t)− cl)]

+, where γ > 0 is a stepsize, and

[z]+ = max{z,0}.

3. Communicates new price ξl(t +1) to all sources

that use link l.

• Source s:

1. Receives from the network the total price

along its path ξ s(t) = ∑l∈Ls ξl(t).

2. Computes its new rate xs(t + 1) =
argmaxx [Us(x)−ξ s(t)x].

3. Communicates its new rate to all links on its

path.

If γ is small enough and the problem is convex, this algo-

rithm is convergent, even with modifications, ranging from

asynchronous computation to multiple paths and limited

communication ([1] and later papers). In reality, however,

for many applications the utility function is unlikely to be

concave (a good explanation can be found in [7]). In most

cases this means, that utility grows rapidly around some

preferred transmission rate, much higher than the minimum,

and only slowly grows for higher rates. Eliminating such

nonconcavities by raising lower limits to the “preferred”

rates and using convex approximations, as suggested in [1],

may lead to exceeding the limit defined in the feasibility

assumption and other problems, explained in [2].

2.1. Proximal convexification

There are many available methods of convexification (a sur-

vey can be found in [3]). The augmented Lagrangian

method [11, 12], although simple and effective, would de-

stroy separability and the link prices would not be suf-

ficient information for the sources. The proximal method

(see [13]) deals with nonseparability at the cost of an ad-

ditional level of iteration.

A nonconvex problem:

min
x

f (x) (2)

subject to h(x) = 0, g(x) ≤ 0,

where all functions are twice continously differentiable, can

be solved by iterative application of the multipliers method

to a modified problem:

min
x

f (x)+(θ/2)‖y− x‖2 (3)

subject to h(x) = 0, g(x) ≤ 0.

where y is a parameter approximating the optimal point

and θ > 0 is the convexification parameter. Large values

of θ give a larger area of convergence, but its rate becomes

slower. At a higher, additional level of iteration we treat

the value of the optimised function in the above problem

depending on the parameter y, φ(y) as the goal function

and solve miny φ(y) using some simple iterative algorithm,

usually a Jacobi type iteration yk+1 = x̂k, where x̂k is the

solution of (3) for y = yk. The method can easily be adapted

for problems with inequality constraints.

2.2. Partial convexification

The additional level of iteration cannot be implemented

in a changing distributed environment. Finding the right

value for the convexification parameter – not too large, not

too small – is difficult too. Luckily, the strict convergence

guarantees of the original method are not necessary for

traffic control, neither is strict optimality, as long as “good”

solutions are found. In a real network the algorithm may

never have enough time to converge to a fixed solution –

the state of the network changes all the time, even during

optimization. Old connections terminate, new ones are

created and even an existing connection may have changing

requirements – the problem is not a stationary one. More

important than optimality are nonoscillatory behaviour,

ability to smoothen perturbations and a possibility of

simple, efficient implementation. Therefore in [2] we

proposed the following algorithm, merging the higher

iteration levels and dropping the requirement for the

convexification strength, represented by a parameter θ , to

be sufficiently large to make the problem convex:

Algorithm 2 (convexified projection algorithm)

At times t = 1,2, . . .:

• Link (router) l (as in Algorithm 1):

1. Collects the rates xs of all sources using this

link (s ∈ Sl) and computes xl = ∑s∈Sl
xs.

2. Computes a new price ξl(t + 1) = [ξl(t) +
γ(xl(t)− cl)]

+, where γ > 0 is a stepsize, and

[z]+ = max{z,0}.

3. Communicates new price ξl(t +1) to all sources

that use link l.

• Source s:

1. Receives from the network the total price on its

path ξ s(t) = ∑l∈Ls ξl(t).

2. Computes its new rate xs(t + 1) =

argmaxx
[

Us(x)−ξ s(t)x− (θ/ρ)‖xs(t)− x‖ρ
ρ

]

,

where θ > 0 and ρ ≥ 1 are parameters.

3. Communicates new rate to all links on its path.

Parameter ρ in this algorithm is equal to 2 by default, other

values, although possible, are not recommended, as they

additionally weaken the local convexification effect. Param-

eter θ should actually be a source-dependent value θs, so

we use the parameter η = θs|Ms −ms|
ρ as a global specifi-

cation of convexification strength.
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3. The ρ-proximal convexification

The ρ-proximal convexification method is a version of the

proximal algorithm, developed in [3, 14]. It modifies the

convexifying terms added to the goal function of the modi-

fied problem (3) in an attempt to attain faster convergence.

The modified problem in the new version is as follows:

min
x

f (x)+(θ/2)‖y− x‖2 +(θ/ρ)‖y− x‖ρ
ρ (4)

subject to h(x) = 0, g(x) ≤ 0.

It is possible to weigh the two convexifying terms differ-

ently, but the general idea remains the same. It is important

that the quadratic term is not completely removed, as it is

necessary for local convexity near y, not provided by higher

order terms. Value ρ should be greater than 2. For practi-

cal reasons integer values are preferred. The most probable

choice is 4, as it is easy to compute from the quadratic term,

6 or 8 might also be used for more difficult problems. For

further analysis see [3, 14].

4. Modified partial convexification

The modification proposed in Section 3 can also be ap-

plied to Algorithm 2, giving the following algorithm:

Algorithm 3 (modified convexified projection algorithm)

At times t = 1,2, . . .:

• Link (router) l (as in Algorithm 1):

1. Collects the rates xs of all sources using this

link (s ∈ Sl) and computes xl = ∑s∈Sl
xs.

2. Computes a new price ξl(t + 1) = [ξl(t) +
γ(xl(t)− cl)]

+, where γ > 0 is a stepsize, and

[z]+ = max{z,0}.

3. Communicates new price ξl(t +1) to all sources

that use link l.

• Source s:

1. Receives from the network the total price on

its path ξ s(t) = ∑l∈Ls ξl(t).

2. Computes its new rate

xs(t +1) = argmax
x

[Us(x)−ξ s(t)x

−θ
(

(α/2)‖xs(t)− x‖2
2

+((1−α)/ρ)‖xs(t)− x‖ρ
ρ

)]

,

where θ > 0, α ∈ (0,1) (preferably not too

small) and ρ ≥ 2 are parameters.

3. Communicates new rate to all links on its path.

The newly introduced parameter α can be chosen arbitrar-

ily. For α = 0 or α = 1 the algorithm is identical to Algo-

rithm 2. In the simulations we decided to make α a per-

source parameter αs, derived from the assumption that,

when the argument is Ms −ms, the quadratic term is four

times smaller than the other one. This way near the cen-

ter of convexification (x(t) in this algorithm) the quadratic

term still dominates, while at longer range the stronger con-

vexifier is more important. Parameter θ is chosen the same

way as before, ρ defaults to 4. The generally better convex-

ification of the ρ-proximal method suggests, that the new

algorithm may be more effective than the original.

The mixed quadratic – higher order concave term has the

advantages of both the original and convexified algorithm.

As in the Algorithm 2, there is a mechanism to prevent

the sources from oscillatory behaviour – the higher order

term adds a penalty for such big changes. At the same

time, the quadratic term is smaller and doesn’t affect the

utility function more than necessary. This is similar to

the simple convexified algorithm with ρ set to any value

greater than 2. This method however does not completely

eliminate the quadratic term, which results in better lo-

cal concavity near xs(k). Through analogy to the family

of proximal convexification methods for general optimiza-

tion there are reasons to believe, that this may give better

results for small steps. The simple convexified algorithm

with ρ ≥ 3 tended to cause oscillations for some types of

utility functions and, although better than the original one,

often gave worse results than with ρ = 2. The additional

quadratic term is added to eliminate that effect.

The new algorithm is more complicated, but not signifi-

cantly so. Adding one more multiplication (two, including

a constant) and one addition doesn’t have much effect on

the calculation time for the utility function. The only real

problem is the maximization of utility. In the original al-

gorithm it was done by reversing the function. In the con-

vexified algorithms, including the simple one, such a solu-

tion, while possible and suggested, is difficult to find. The

convexification makes utility a function of two variables.

Luckily only one of them is maximized, the other one is

known in each iteration. For simplicity an optimization

procedure was used in the experiment instead of an inverse

function.

5. Computational results

The algorithms were tested on a single link with four

sources, described by four different, S-shaped utility func-

tions. For all functions U(ms) = 0, ms = 1 (not 0, to simu-

late the trickle of packets necessary to keep the connection

to the router and identify the current price), U(Ms) = 1
and Ms = 100, except M4 = 120. Another parameter is the

rate at which utility is equal to 0.5, for these four sources

those rates are 40, 60, 50 and 100. The last source also has

a steeper gradient at this point, simulating a large, nonelas-

tic connection.
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We also ran tests with concave approximations of these

functions, modifying the lower bound on sources’ rates

accordingly (if our algorithms failed in the simple con-

vex case, their effectiveness against nonconvexity wouldn’t

matter). Tests were repeated with different capacities of

the link and different parameters of the algorithms (Fig. 1).

We set γ to 10−5. Note, that for convex approximations

the minimal bandwidth required for feasibility is about

190 units, so a problem with bandwidth of 150 units, more

than enough to support any of the sources at full utility,

does not have a feasible solution after the approximation.

We will look at some of the results for a bandwidth of 150,

250 and 400 units. In the first case there is no feasible

solution for the concave approximations, and the noncon-

vexity is significant. In the second case the approximation

will work, but the original problem’s nonconvexity can’t

be ignored. In the third case there is almost enough band-

width and the nonconvexity should not have any effect on

the calculation.

Fig. 1. The total utility functions for the concave approximation

with link capacity of 150 and 250 units, different algorithms.

We analyzed the following results: the rates of all sources,

the total utility of the sources, the price of the link and

the difference between the total traffic and available ca-

pacity. Only some of those are shown and we concen-

trate on the total utility. The convexification parameter η
is set to 2. Our tests have shown, that a value of 0.5 is

enough for the convexification to be useful and reduce os-

cillations of the original algorithm, but 2 is better, as it

is enough for the algorithm to converge to a stable so-

lution. Another observation is that with little congestion

(C = 400) the nonconvexity is not important, unless there

is a huge number of small connections. The graphs in

this case were almost identical, whether the original utility

functions, or their concave approximations were used. Be-

cause of that we only present the graph for the nonconvex

case (Fig. 2) – in the convex case all processes were about

20% slower, but very similar in shape, and total utility con-

verged to 3.8891 instead of 3.9189, minor differences due

to approximation error.

5.1. Concave approximation

As we can see in Figs. 1 and 2, all algorithms work well

for the concave approximation, if a feasible solution exists.

The convexified algorithms tend to react a little slower and

overreact, causing a short oscillation – this is a predictable

effect of the introduced inertia. The graph for the largest

capacity shows the first advantage of the ρ-proximal al-

gorithm over the quadratic one. Its reduced local effects

reduce the oscillation and its results are close to the origi-

nal algorithm’s. The quadratic convexification doubles the

time required to reach stable state. For C = 250 however,

the proximal algorithm converged faster, although it reacted

last to the changing price.

Fig. 2. The total utility functions for the nonconcave case with

link capacity of 400 units, different algorithms. The graph for the

concave approximation is very similar.

When no feasible solution exists, the total utility decreases

exponentially, almost identically for all algorithms (Fig. 1,

C = 150). This reduction corresponds to the logarithmic

shape of the approximation and a constant, linear growth

of the price, caused by an almost constant gap between the

capacity (150) and the traffic, nearing the sum of lower

bounds (about 191). When the price reaches the gra-

dient of the total utility at the lower bound, the utility

will achieve 0 and stay there, with the price growing idefi-

nitely.

5.2. Original problem

With congested links and nonconcave utility functions the

problem is more difficult. For both C = 150 and C = 250
there are feasible solutions if convex approximation is not

used, but the original algorithm, as proposed by Steven

H. Low does not reach one – instead, it oscillates indefi-

nitely (Fig. 3). This confirms the expected behaviour for

nonconvex systems. A smaller value of γ will not solve

this problem, the algorithm will not converge. While the

average utility will be near optimum, the oscillations may

not be acceptable.
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Fig. 3. The total utility functions for the concave approximation

with link capacity of 150 and 250 units, Algorithm 1.

The convexified algorithms all converge to a solution

(Fig. 4). The initial jumps are the effect of changing the

convexification center to near 0 – the convexified function

rapidly changes shape and the price has to be corrected.

After one or two such rapid changes the algorithms con-

verge. The discontinuities are less prominent with more

available bandwidth, as the prices change less rapidly in

this case.

Fig. 4. The total utility functions for the concave approximation

with link capacity of 150 and 250 units, convexified algorithms.

These graphs show the advantages of the ρ-proximal mode:

the fourth-power term only works further from the convex-

ification center (compared to the quadratic one), so as it

moves to lower values, the convexification weakens and

a jump occurs sooner. The local convexification with the

quadratic term is weaker than in the quadratic-only ver-

sion, so the algorithm converges faster. It is a general rule

for convexification methods – the weaker the convexifica-

tion, the faster the convergence, unless it is too weak, in

which case the algorithm does not converge at all. The

ρ-proximal algorithm is therefore the fastest one in this

test. The quadratic term is unnecessarily slowed down, but

also converges well.

5.3. Other results

The utility is not the only result we collected. In this section

we will show, how it corresponds to more physical values.

We will now focus on a system with 250 units of capac-

ity and nonconcave utility functions, controlled by Algo-

rithms 1 and 3. Its total utility can be found on Figs. 3

and 4. The sources’ rates, price on the link, and the link’s

overuse (the difference between offered load and capacity)

are depicted in Figs. 5, 6 and 7.

The Low’s algorithm fails as soon as the price crosses a crit-

ical value for source number 4, which immediately jumps

to its lower bound (an effect of nonconvexity). It then

switches back and forth between the two ranges of rates,

with price changing accordingly, as the total offered load

is either significantly below or over the capacity.

Fig. 5. Traffic rates for C = 250and nonconvex utility functions:

(a) Low’s algorithm (Alg. 1); (b) ρ-proximal algorithm (Alg. 3).

Our ρ-proximal method also reaches the same point, a bit

later, as the convexification slows it down. When the fourth

source reduces its rate to minimum, however, it keeps that

value, while the others increase their offered traffic to use

up the free capacity, just as it should be. The price (Fig. 7)

changes accordingly: first it grows to 0.0166 to defeat con-
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Fig. 6. Link price for C = 250, nonconvex utility functions,

algorithms: Low’s and ρ-proximal.

Fig. 7. Excess traffic/slack for C = 250, nonconvex utility func-

tions, algorithms: Low’s and ρ-proximal.

vexification, then, when the traffic suddenly drops and con-

vexification keeps source 4 at low traffic rate, it returns to

the proper level of 0.0056. Figure 7 shows how the excess

traffic drops to the point where one of the connections has

to switch to minimum traffic. Afterwards there is quite a lot

of slack, and traffic grows to fill it.

6. Summary

In this paper we present the results of a new experiment

with the convexified gradient projection algoritm and in-

troduce a modification of this technique using ρ-proximal

convexifying term.

The experiment for the older, quadratic variant confirmed

the results of [2], using a very different approach – a sin-

gle link with few, easily observable connections, instead of

a network of 11 nodes with hundreds of connections and

analysis limited to statistics. It is at the same time a com-

plete reimplementation.

The new ρ-proximal variant proved to be as effective in

stopping oscillations as the quadratic one and accellerates

the convergence. Both work well for nonconcave utility

functions, where the original Algorithm 1 fails.
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