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Summary 

An efficient low frequency approximation for the reactive sound power of an elastically supported 

circular plate has been directly derived from the corresponding high frequency expressions presented 

earlier. The analysis of the approximation error has shown that the low frequency formulation can be 

applied if the error of 10% can be accepted. The result is valid for any axisymmetric boundary 

configuration of the plate. The influence of the boundary configuration on the reactive sound power has 

been examined. 

Keywords:  reactive sound-power, mode number, sound radiation. 

MOC BIERNA D WI KU P YTY KO OWEJ W ZAKRESIE NISKICH CZ STO CI

Streszczenie

Efektywn  aproksymacj  niskocz sto ciow  biernej mocy d wi ku p yty ko owej zamocowanej 

spr y cie wyprowadzono bezpo rednio z odpowiednich wyra e  wysokocz sto ciowych 

przedstawionych wcze niej. Analiza b dów aproksymacji pokaza a, e wzór niskocz sto ciowy mo e

by  stosowany, je li dopuszczalny b d wzgl dny mo e wynosi  do 10%. Otrzymany wynik jest s uszny 

dla dowolnej osiowosymetrycznej konfiguracji brzegowej p yty. Zbadano wp yw konfiguracji brzegowej 

na moc biern .

S owa kluczowe:  bierna moc d wi ku, numer modu, promieniowanie d wi ku.

1. INTRODUCTION 

The self power of a circular plate is a very 

important magnitude useful for computing numerous 

acoustic values like, e.g., sound pressure radiated, 

plate’s transverse deflection or total sound power 

lost by an acoustic system covering the plate. The 

normalized complex sound power is an equivalent 

magnitude with the normalized impedance of the 

system. 

So far, many investigations dealt with the 

magnitude. Levine, Leppington and Rdzanek 

presented their theoretical analysis of some efficient 

high frequency asymptotes for a clamped circular 

plate [1,2]. Czarnecki, Engel and Panuszka proposed 

an equivalent area as well as correlation methods to 

predict the total sound power radiated by a clamped 

circular plate [3,4]. Their theoretical results showed 

a good agreement with the measurements. Engel and 

Stryczniewicz also determined analytically the 

magnitude [5,6]. Stepanishen and Ebenezer used 

both the wavenumber as well as time domain 

approaches to determine the self-power of a clamped 

circular plate [7,8] providing some efficient 

theoretical expressions. Rdzanek, Rdzanek Jr. and 

Engel proposed a low frequency approximation for 

the self-power of some circular plates  [9,10]. The 

authors also extended the theoretical results 

presented in Refs. [1,2] and generalized them 

providing some high frequency asymptotes valid for 

an elastically supported circular plate [11]. 

So far, there are no analytical approximations for 

the reactive sound power of an elastically supported 

circular plate within the low frequencies. Therefore, 

the authors of the paper, desiring to fill this literature 

gap, extend the results presented in Ref. [11] from 

the high to low frequencies examining carefully 

approximation errors arising. They show that the 

approximation errors can be accepted for some 

higher modes since the relative error does not 

exceed 1% within almost the whole low frequency 

range and for the lowest frequencies the magnitude 

rapidly tends to its value of zero. 

2. MATHEMATICS 

A thin circular plate is embedded into an infinite 

rigid baffle. The plate vibrates and radiates some 

acoustic waves into the free field. The analysis 

focuses on the reactive sound power for some 

axisymmetric time harmonic processes. This 

requires determining the eigenvalues of the system 

from the frequency equation in the form of 
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DIAGNOSTYKA’34 – ARTYKU Y G ÓWNE

RDZANEK i inni, The Reactive Sound Power Of A Circular Plate Within The Low Frequencies 

60

where

 for  (2a) 
)()(

)()(

011

011

nn

nn

qIIm

qJJl
0qq

qIIm

qJJl

nn

nn

)()(

)()(

101

101  for  (2b) 0qq

 for  (2c) 
)()(

)()(

102

102

nn

nn

pIIm

pJJl
0pp

pIIm

pJJl

nn

nn

)()(

)()(

012

012  for  (2d) 0pp

and ,  are some arbitrary values set within the 

limits , e.g. as the value of unity, 
0q 0p

];0[

D

aK
q

n

W

3

3

,
nnD

aK
p

1  (3) 

where  and  boundary stiffness values 

associated with the force resisting transverse 
deflection of the edge and with the boundary the 
bending moment at the edge, respectively, 

WK K

aknn

eigenvalue of the system, )1(12 23EhD  plate 

stiffness, Dhk nn

24  structural wavenumber, 
n

eigenfrequency, ,,E  and  the plate’s Young 

modulus, Poisson ratio, density and thickness, 
respectively.

h

The mode shape of the system is (cf., Ref. [12]) 
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The eigenfunction of the system can be 
formulated briefly as 
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where we denote  and  as Bessel and modified 

Bessel functions of the first order, respectively, 
1J 1I

)()( 11 nnnn ICJ , )()( 00 nnnn ICJb ,

xw  and xw  for formulating integrals 

representing the active and reactive sound power, 
respectively,
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and sinx , ka  dimensionless wavenumber. 

The complex self-power is 
 (6c) rnann iPPP

for the time dependence )exp( ti .

2.1. The high frequencies 

The elementary expressions for the active and 
reactive sound power within the high frequency had 
been formulated for 11 nnnn kk  as 

22

2

11

)42sin()42cos(

n

n

n

n
n

nnan

wu
A

YXP

 (7a) 

2/32

)3(

2/32

)2(

2

)1(2

)1(2

asinh

)1(2

arcsin

1

2

)42sin()42cos(

nn

nn

nn

nn

n

nn

nnrn

A

XYP

 (7b) 

where

,)()(
2

)()(
1

1

2

1

2
1

2
0

2

2
1

2
02

2
)1(

nn
n

nn

n

n
n

II
C

JJ

 (8a) 

 (8b) 
,)()()()()1(2

)21)(()(

1100
2

22
1

2
0

)2(

nnnnnn

nnnn

IJIJC

JJ

,)()()()()1(2

)21)(()(

1100
2

22
1

2
0

2)3(

nnnnnn

nnnnn

IJIJC

IIC
 (8c) 

),(4 222

2

22

2
2

nn

n

n

nn hdAX  (8d) 

.8

2

22

2
2

nn

n

n

nn hdAY  (8e) 

and presented earlier in the literature (cf., Ref. [11]). 

2.2. The low frequencies 

Given that (cf., Ref. [13]) 
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and that the phase changes when moving from the 
high to low frequencies, namely from 1n  to 

1n , for some of the terms in Eqs. 7, we have 
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This provides the low frequency asymptotic 
formulations formulated as 
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Further, we are not interested in using Eq. (11a) 
since some efficient low frequency approximations 
are known for the active sound power [9,10]. 
Moreover, Eq. (11a) produces some big 
approximation errors. Now, we are interested in 
using Eq. (11b) representing the reactive sound 
power and in examining its approximation error if it 
is acceptable. 

3. DISCUSSION 

First, we have to examine the behaviour of the 
reactive sound power within the low frequencies, 
namely for 1nkk . This is illustrated in Fig. 1 

showing the magnitude constantly tending to its 
value of zero, which is plotted in the fully 
logarithmic coordinates. The curves plotted for some 
sample modes do not considerably differ each other. 
In consequence, we are especially interested to 
assure an acceptable approximation error within 
almost the whole low frequency range but not 
necessarily for the very low frequencies since they 
imply the very low values assumed by the 
magnitude. 

Fig. 1. The reactive sound power for some sample 
axisymmetric modes within the low frequencies 

The absolute value of approximation error has 

been estimated as rnArnIrn PPP ,, , where

and  have been computed from Eqs. (6b) and 

(11b), respectively, and represented by the curves 
plotted in Fig. 2.  The straight lines represent the 
theoretical error value defined as 

rnIP ,

rnAP ,

3/232)(25.0 nnrn kkP . It is easy to note that the 

error estimation does not considerably exceed its 
theoretical value within the whole low frequency 
range. However, we must be careful here since the 
magnitude assumes some comparable values as the 
error does for the very low frequencies, namely for 

01.0nkk  (cf., Fig. 1) and it is worth analyzing 

the relative error value shown in Fig. 3. The relative 

error does not considerably exceed its value of 10% 
for 1.0nkk  for the first axisymmetric mode, 

01.0nkk  for the third mode, and for the higher 

modes the validity frequency range is even wider. 
The relative error grows up to its value of 100% for 
the very low frequencies where the magnitude 
assumes the value of zero. 

Fig. 2. The absolute approximation error 

Fig. 3. The relative approximation error formulated 
as rnrnrn PPP

So, if we can accept the approximation error of 
about 10% for some engineering computations then 
we are equipped with an efficient low frequency 
asymptotic formulation for the reactive sound power 
of an elastically supported circular plate. 

Now, let us examine the influence of an 
axisymmetric boundary conditions of the plate 
represented by the two values of boundary stiffness 

 and  (cf., with Eq. (3) and Ref. [12]). All 

the curves plotted in Figs. 4 and 5 have been 
prepared for 

WK K

5.0nkk , i.e. where the 

approximation error does not exceed 10% for all 
modes. Fig. 4 shows that the change in normalized 
value of  has the very influence on the reactive 

sound power within its middle range about the value 

of

WK

133 DaK nW . The same can be observed with 

the change in normalized value of  which is 

shown in Fig. 5. Generally, the influence is bigger 
for the lowest modes and no influence can be 
observed for those higher. 

K
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Fig. 4. The reactive sound power in terms of 

normalized stiffness value  for WK 1DaK n

Fig. 5. The reactive sound power in terms of 

normalized stiffness value  for K 133 DaK nW

4. CONCLUSIONS 

Finally, we are provided with an efficient low 

frequency approximation for the normalized reactive 

sound power of a circular plate with some arbitrary 

but axisymmetric boundary conditions. The 

formulation can be used for some engineering 

computations if the relative error of 10% can be 

accepted for this purpose. 

REFERENCES

[1] Levine H., Leppington F.G.: A note on the 

acoustic power output of a circular plate. Journal 

of Sound and Vibration, 1988, Vol. 121, No. 2, 

pp. 269–275. 

[2] Rdzanek W.: Mutual impedance of a circular 

plate for axially-symmetric free vibrations at 

high frequency of radiating waves. Archives of 

Acoustics, 1992, Vol. 17, No. 3, pp. 439–448. 

[3] Czarnecki S., Engel Z., Panuszka R.: Correlation 

method of measurements of sound power in the 

near field conditions. Archives of Acoustics,

1976, Vol. 1, No. 2, pp. 201–213. 

[4] Czarnecki S., Engel Z., Panuszka R.: Sound 

Power and Radiation Efficiency of a Circular 

Plate. Archives of Acoustics, 1981, Vol. 16, 

No. 4, pp. 339–357. 

[5] Engel Z., Stryczniewicz L.: Determination of 

sound power radiated by vibrating plate. 

Mechanics–Quarterly at UMM, 1988, Vol. 7, 

No. 1–2, pp. 5–19. [In Polish]. 

[6] Engel Z., Stryczniewicz L.: The determination of 

the acoustic power radiated by a vibrating plate. 

Mechanics–Quarterly at UMM, 1990, Vol. 9, 

No. 1, pp. 5–12. [In Polish]. 

[7] Stepanishen P.R., Ebenezer D.D.: A joint 

wavenumber–time domain technique to 

determine the transient acoustic radiation loading 

on planar vibrators. Journal of Sound and 

Vibration, 1992, Vol. 157, No. 3, pp. 451–465. 

[8] Stepanishen P.R., Ebenezer D.D.: An in-vacuo 

modal expansion method to determine the 

transient response of fluid-loaded planar 

vibrators. Journal of Sound and Vibration, 1992, 

Vol. 153, No. 3, pp. 453–472. 

[9] Rdzanek Jr. W.P., Rdzanek W.: The self power 

of a clamped circular plate. An analytical 

estimation. Archives of Acoustics, 2003, Vol. 28, 

No. 1, pp. 59–66. 

[10] Rdzanek Jr. W.P., Engel Z., Rdzanek W.: 

The self power of an elastically supported 

circular plates within the low frequency range. 

Submitted to Journal of The Acoustical Society 

of America.

[11] Rdzanek Jr. W.P., Engel Z., Rdzanek W.: 

Theoretical analysis of sound radiation of an 

elastically supported circular plate. Journal of 

Sound and Vibration, 2003, Vol. 265, No. 1, 

pp. 155–174. 

[12] Leissa A.W., Laura P.A.A., Gutierrez R.H.: 

Transverse vibrations of circular plates having 

nonuniform edge constraints. Journal of 

The Acoustical Society of America, 1979, 

Vol. 66, No. 1, pp. 180–184. 

[13] Abramowitz M., Stegun I.A.: Handbook of 

mathematical functions with formulas, graphs, 

and mathematical tables. National Bureau of 

Standards. Applied Mathematics Series 55,

Tenth Printing, 1972. 

Wojciech P. RDZANEK Jr. 

was born in Rzeszów, Poland, 

on October 30th, 1970. He 

graduated from Wroc aw

University of Technology in 

1994, and received his Ph.D. in 

engineering from The 

University of Mining and 

Metallurgy in Kraków in 2000. 

He is currently a tutor at the Institute of Physics in 

University of Rzeszów. His scientific interests cover 

both theoretical and experimental analysis of the 

acoustic behaviour of some plate vibrating systems. 


