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Abstract

Contemporary measuring technology in condition monitoring of critical systems allow us to form 

diagnostic symptom observation vector, with components different physically, and to extract fault 

information from such created symptom observation matrix. This is possible by using singular value 

decomposition algorithm and specially written program, which enable also to optimize the dimensionality of 

symptom observation vector, and to extract needed diagnostic information. We can use as the next, the 

concept of symptom reliability and symptom hazard rate to calculate the symptom limit value, for system 

maintenance planning and execution. It seems to be possible to perform these task in an autonomous way, 

and adding also the knowledge base and learning loop, creating in this way some first approach to Condition 

Inference Agent (CIA). 

Keywords: multi dimensional observation, symptom observation matrix, singular value decomposition, 

generalized fault symptoms, symptom reliability, symptom limit value, condition inference agent. 

WPROWADZENIE WNIOSKOWANIA WIELOWYMIAROWEGO DO DIAGNOSTYKI DRGANIOWEJ 

Streszczenie

Wspó czesne technologie pomiarowe w diagnostyce obiektów krytycznych pozwalaj  nam formu owa

bardzo bogaty wektor obserwacji diagnostycznej obiektu, ze sk adowymi o ró nej naturze fizykalnej. 

Uformowana w ten sposób macierz symptomowej obserwacji zawiera informacj  o wielowymiarowej 

przestrzeni uszkodze  rozwijaj cej si  w czasie ycia obiektu. Jak si  okazuje, ekstrakcja tej informacji jest 

mo liwa przez zastosowanie rozk adu wzgl dem warto ci szczególnych (SVD). Mo emy w ten sposób 

formu owa  uogólnione symptomy uszkodze , a uwzgl dniaj c koncepcj  niezawodno ci symptomowej 

wyznaczy  warto  graniczn  symptomu dla bezpiecznej eksploatacji. Mo liwa jest te  informacyjna ocena 

pierwotnie mierzonych symptomów i optymalizacja wektora obserwacji. W ten sposób mo na zwolna 

my le  o projekcie samodzielnego agenta diagnostycznego - CIA. 

S owa kluczowe: obserwacja wielowymiarowa, macierz symptomowej obserwacji,  

rozk ad wzgl dem warto ci szczególnych, uogólnione symptomy uszkodze ,

niezawodno  symptomowa, warto  graniczna symptomu. 

1. INTRODUCTION

Condition monitoring of critical machinery depends 

on observation of some symptoms
2, (like amplitudes of 

vibration, the temperature, etc), and comparing them 

with their limit values, usually determined by some long 

term experience. In most cases, even for sophisticated 

machinery like turbo set, every measurable symptom Si

is monitored and assessed separately, by its specific 

symptom limit value Sil. But contemporary advances of 

measuring technology, connected with intelligent 

sensors allow us to measure and process several 

symptoms at the same time. Moreover, we can have also 

as measured some parameters of system operation, like 

mechanical or electrical load, the temperature, etc, or at 

least the system lifetime counter , as the first 

assessment of just enumerated components of so called 

logistic vector L, (see for example [1]). 

In this way we can form symptom observation 

vector with many components, and measure it 

sequentially over the span of system life; 0 b,

with each row as separate observation of symptom 

vector. This gives us so called Symptom Observation 

Matrix (SOM), with columns being the component of 

observed symptom vector S, and rows as successive 

observation; S( 1), S( 2), … . In other words, we have 

multidimensional symptom space for system 

condition monitoring, and in the theory it is possible to 

extract from this symptom observation space, the full 

description of system degradation taking place during 

its life. As was shown in [2] using singular value 

decomposition (SVD), and lately also principal 

component analysis (PCA) [3], it is possible to 

decompose information contained in SOM into 

information descending independent components 

called generalized symptoms, which seems to 

describe independent faults evolving in an operating 

system. 

As one can suspect some symptoms can be more 

diagnostic oriented in a given case, so there is 

optimization task and challenge to provide along with 

the condition assessment. This challenge concerns also 

the determination of symptom limit values Sl, as after 

the decomposition of SOM we have no longer 

originally measured symptoms, but some generalized 

ones. However basing on symptom distribution

theory elaborated initially in [4] [6], and later 
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symptom reliability and hazard in [5], we can solve 

this problem basing only on currently assessed SOM. 

Finally it seems to be possible to implement a learning 

loop into just described methodology and to try to 

develop some Condition Inference Agent (CIA) for 

diagnostics of unitary critical systems. These problems 

are described, some of them solved and synthesized in 

this paper, along with some computational program, 

which makes much easier this enormous task. 

2. MULTIDIMENSIONALITY IN CONDITION 

MONITORING AND SYMPTOM 

OBSERVATION REDUNDANCY 

 Let us take into consideration a critical machine in 

operation. During its life 0 <  < b, ( b –anticipated 

breakdown time), several independent faults; Ft ( ), t = 

1,2,..u, are growing. We would like to identify and 

assess these faults by forming and measuring the 

symptom observation vector; [Sm] = [S1,...,Sr], which 

may have components different physically, like 

vibration amplitudes, temperature, machine load, etc. In 

order to track machine condition evolution (faults), we 

are making equidistant reading of above symptom 

vector in the lifetime moments; n, n = 1,... p, p b,

forming in this way the rows of symptom observation 

matrix (SOM). From the previous research and papers 

[7], [2] we know that the best way of SOM pre 

processing is to center it (remove), and normalize 

(divide it) to symptom initial value; Sm (0) = S0m, of

each given symptom (column of SOM). From these 

research it is also known that amount of diagnostic 

information in SOM increases if we append the lifetime 

 column, as the first approximation of system logistic 

vector L. This gives us dimensionless symptom 

observation matrix in the form 

 Opr = [Snm], Snm = 1
0m

nm

S

S
,  (1) 

where bold letters indicate primary dimensional 

symptoms, as taken directly from measurements. 

As it was already said in the introduction, we apply 

now to the dimensionless SOM (1), the Singular Value 

Decomposition (SVD), and principal component 

analysis (PCA), in the form 

  Opr = Upp * pr * Vrr
T, (T- matrix transposition), (2) 

where Upp is p dimensional orthogonal matrix of left 

hand side singular vectors, Vrr is r dimensional 

orthogonal matrix of right hand side singular vectors, 

and the diagonal matrix of singular values pr is as 

below 

pr = diag ( 1, …, l ), and 1 > 2 >…> u >0, (3) 

u+1 =… l =0, l= max (p, r), u = min ( p, r). 

The above means, that from the r measured 

symptoms we can extract only u  r independent 

sources of diagnostic information describing evolving 

generalized faults Ft, (see Fig. 1). As it is seen from Fig. 

1 upper left picture, only a few developing faults are 

making essential contribution to total fault information, 

the rest of generalized faults are below the level of 10% 

noise. What is important here, that such SVD 

decomposition can be made currently, after each new 

observation of the symptom vector; n = 1, … p, and in 

this way we can trace the faults evolution in a system 

(see Fig. 5). From the current research of this idea [3], 

we can say that the most fault oriented indices obtained 

from SVD/PCA is the first pair: (SDt, t ), and the sum 

of all indices; SumSDi, Sum i. The first fault indices 

SDt can be named as discriminant of the fault t, and 

one can get it as the SOM product and singular vector 

vt, as below 

 SDt = Opr * vt = t ut (4)  

We know from SVD theory, that all singular 

vectors vt are normalized to one, so the energy norm of 

new discriminant is simply  

 Norm (SDt) SDt = t., t = 1,...,u. (5) 

The above discriminant SDt( ) can be also named 

as fault profile, and in turn singular value t( ) seems 

to be its advancement (energy norm).  

The similar inference can be postulated to the 

meaning, and the evolution, of summation quantities, 

what can mean the total damage profile SumSDi( ),

and total damage advancement Sum i( ),

SumSD ,)()(
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PuSD
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1 1

~)( . (7) 

But the last relation seems to be not fully validated 

as yet, and it seems to also, that the condition inference 

based on the above summation measures; Sum(*) may 

stand for the first approach to multidimensional 

condition inference, as it is clearly seen from the Fig 1. 

Here railroad Diesel engine named sil54d2 was 

diagnostically monitored by vibration measurements3

performed on the top of one of cylinders each ten 

thousand kilometer of mileage, up to the breakdown. 

Altogether 12 vibrational parameters were gathered in 

the symptom observation vector, beginning from the 

three acceleration amplitude measures; avg, rms, peak, 

three velocity, displacement, and Rice frequency 

measures, with the first component in the vector being 

always the engine lifetime .

 In this way SOM of the engine has 13 columns, 

and as it is seen from the upper top right picture it 

contains information concerned with several faults Ft,

but only two of them are prevailing the 10% level of 

noise. The top right picture presents the life behavior of 

symptoms in SOM; from 0 km mileage up to the 

engine breakdown at 250.000km, together with the 

straight line being the course of the engine life . The 

bottom left picture shows the course of summation 

generalized fault discriminant SumSDi, and SD1 below 

it, and again the rest of generalized fault discriminant is 

on the level of noise, near the zero line. The last 

picture, the bottom right shows the course of singular 

values i, here the prevailing information is contained 

again in the summation discriminant, and the first one 

1, but the second singular value 2 grows substantially 

only after 100 thousand km mileage.  
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Fig. 1. The information contents of symptom observation matrix for a Diesel engine sil54d2, and independent fault 

indices SDi, i as discovered by SVD/PCA computation program 

Now we can ask the question, the 13 component of 

symptom observation vector and only one significant 

generalized fault can be observed ! Hence, it has to be 

great redundancy in our symptom observation space 

and some of measured symptoms can be omitted, can 

one say which one, and how many of them? Next Fig. 

2 gives some answer to this problem presenting two 

pictures, upper one with assessment of information 

contribution given by each symptom to the overall 

information resource in the SOM. One can notice 

clearly here, that last three symptoms (11 – 13), being 

the Rice frequencies of engine vibration can be really 

omitted. More detailed information on the contribution 

of each symptom to SD1 discriminant is shown on the 

bottom picture of Fig. 2. We can notice here, that again 

symptoms 11 – 13 are fully redundant, and the most 

informative symptom in our symptom observation 

vector is No 3. That means the root mean square 

acceleration amplitude Arms, and the next one no7 the 

peak vibration velocity Vpeak are essential, and the same 

is true for overall information contribution. Also the 

life symptom  (no 1) gives quite substantial amount of 

information to the overall resource in SOM, as well as 

to SD1. Another question can be posed with respect o 

observation vector, namely what kind of symptom we 

should chose to minimize observation redundancy ? 

May be to change the sensor location is enough, and 

we can use Arms or similar symptom with large life 

dynamics in a different places of our object ? This 

problem addresses the next figure 3, where similar 

diesel engine were monitored vibrationally, by 

measuring Arms at the top of each cylinder. It is seen 

from all pictures of the Fig. 3, that by measuring only 

one symptom, even with sensor separation over half a 

meter, gives us the information on the same fault only, 

and there is no gain in multiplying another sensor 

location. New information can be brought only by the 

new symptom which is different physically or has quite 

different frequency spectrum (acoustic emission, 

ultrasound, etc). We can use the same vibration 

symptom only if the damping of vibration in the 

structure is substantial, giving no leakage of 

information among sensors. 
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Fig. 2. The redundancy assessment of symptoms in the symptom observation space for the engine sil54d2  

(no 11 – 13 redundant)

Fig. 3. Engine fault description and differentiation by 9 sensors measuring the same symptom Arms, but located on 

different cylinders of another railroad diesel engine S24 of the same type 
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3. GENERALIZED SYMPTOM RELIABILITY 

FOR CONDITION INFERENCE 

Looking at Fig 1 and/or Fig 3 bottom left pictures 

we may know now the course of generalized symptoms 

in each particular case of multidimensional observation 

of critical mechanical system. We can also exclude 

redundant symptoms not carrying useful diagnostic 

information (see Fig. 2). But how to proceed with 

diagnostic inference and elaboration of "go/no go"

maintenance decisions? On what basis we can 

determine the limit values Sl for generalized symptoms 

SD1, or SumSDi or both, shown on bottom left pictures 

of Fig.1 and 2 ?  

But we can make the statistics of observations from 

the calculated generalized symptoms. Being more 

specific the cumulative distribution of generalized 

symptom of machine being in good condition. It was 

shown by the present author in several papers that such 

cumulative symptom distribution is equivalent to 

symptom reliability R(S) [4], [5], and we can get from 

this also the new quantity called symptom hazard rate.

Not going into the theory presented elsewhere, the 

symptom reliability can be used for determination of 

symptom limit value Sl by using Neyman-Pearson rule 

of statistical decision theory [4]. If we determine, or 

assume, the allowed probability of unneeded 

(erroneous) repair of machines being in good 

condition, say A, knowing also the needed availability 

of the machine set, say G, so formula leading to 

determination of the symptom limit value Sl is simply 

 G  R( Sl ) = A,  Sl = f [ R(S), A, G, ]. (8) 

It seems to be simple to carry such calculation by 

some statistical program, Matlab® for example, 

moreover it was show also [4] that symptom reliability 

can be transformed to average symptom life curve 

S( / b) defined in the dimensionless system lifetime. 

The result of such calculations is shown on pictures of 

Fig. 4, where scale of symptom value was enlarged by 

+1 due to calculation convenience. 

From these two pictures one can conclude, that both 

of them can be used for effective condition inference 

and condition based maintenance. The generalized 

symptom reliability allows us to assess the symptom 

limit value Sl, while generalize symptom life curve 

enable us to trace the life evolution of our critical 

system, and to make right maintenance decision just on 

time. 

Fig. 4 Generalized symptom reliability and generalized symptom life curve of industrial fan observed multi 

dimensionally 
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4. REAL TIME INFERENCE AND 

OPTIMIZATION OF SYMPTOM 

OBSERVATION MATRIX 

We have shown above being in the 

multidimensional observation space that it is possible 

to optimize the dimensionality of symptom observation 

vector, keeping its redundancy as small as possible (see 

Fig. 2). It was shown also, that we can calculate the 

symptom limit value Sl and average symptom life 

curve S( ) for multidimensional inference (see Fig. 4). 

And now one can ask, well it was possible to show it at 

the end of system life time, just near b, but what about 

the beginning of system operation. Can we make the 

same after the beginning of system observation ? It 

seems to be, that in general it depend on the 

smoothness of system operation and its loading, but 

just to show how it was in the elaborated cases on 

Diesel engines, please analyze the sequence of building 

the fault discriminant SD1 and SumSDi, when the new 

row of observation has been added into SOM of the 

industrial fun, with very unstable operation. Even that, 

we can observe that generalized discriminants are 

stabilizing just after tens of observation, like on Fig. 5. 

Much more smooth is symptom reliability curve as 

well as average symptom life curve, as it can be seen 

from Fig. 4. 

Fig 5. Successive building of fault discriminants during sequential increase of system life (observations) 

Summing up, this problem of real time observation 

and real time inference on system condition, it seems to 

be workable, and we can elaborate all problems step by 

step as below. 

1. Chose the set of condition related symptoms from 

the primary group of measured symptoms, 

2. extract condition related information from the set of 

monitored symptoms, 

3. to form generalized fault symptoms as the image of 

evolving faults in a system 

4. to assess currently the limit values for each 

generalized fault 

5. to assess the system condition and make proper 

maintenance decision  

6. to perform condition forecasting on the basis of 

acquired object related specific knowledge, some 

general knowledge, and to communicate and 

implement it. 

When this work will precede automatically, by 

means of some learning loop, one can say we have 

some Condition Inference Agent (CIA). It seems to the 

present author that realization of this task is not far 

away goal, but only next step in the intelligent 

multidimensional diagnostic observation of critical 

system. How may it proceeds in general is shown on 

the next Fig. 6, and one can see that we must learn how 

to incorporate learning loop into CIA, and how to build 

and implement diagnostic knowledge base for a 

specific critical system. All of this is ahead of us, and 
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with contemporary knowledge [9], [10], we can make 

it workable soon. 

5. CONCLUSIONS 

The paper is some synthesis of contemporary work 

on multidimensional diagnostics of critical systems. It 

was shown here, that we can form symptom 

observation vector with many components, being the 

basis for symptom observation matrix (SOM). On the 

basis of SOM and singular value decomposition (SVD)

we can extract all condition related information, and 

optimize the dimensionality of symptom observation 

vector. Starting from generalized fault discriminants 

we can form (in real time) the symptom reliability 

R(S), for estimation of symptom limit value Sl,, which

enable us to infer on system condition and make right 

maintenance decision. It seems to the present author, 

that this task can be made by some autonomous 

software entity called Condition Inference Agent – 

CIA, and right now this is ahead of us. 
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