PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiocarbon concentration in urban area

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radiocarbon concentration has decreased in recent years due to the exchange of 14CO2 between the atmosphere and the oceans, but also due to 12CO2 emission from burning fossil fuels. This second phenomenon known as Suess effect can be observed in the highly industrialized and/or urban areas. New data of radiocarbon concentration in tree rings from Nagoya (Central Japan) and Kraków (Poland), which covered last 20 years, were obtained recently. These data were used to find the relationship between the radiocarbon concentrations in atmosphere and biosphere. Additionally, data of radiocarbon concentration in atmospheric CO2 in Kraków were compared with those derived from annual tree rings, to calculate the time of CO2 uptake for pine trees in this region. These data show that radiocarbon concentration of the CO2 in .urban air. is systematically lower than that in "clean air". Data of radiocarbon concentration were fitted by exponential and linear functions to calculate the time of exchange and predict the future level. Using data of carbon dioxide and radiocarbon concentration from Schauinsland fossil component Cf in carbon dioxide concentration level was calculated in Nagoya and Kraków.
Wydawca
Czasopismo
Rocznik
Tom
Strony
63--68
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Center for Chronological Research, Nagoya University, Nagoya, Japan
  • AGH, University of Science and Technology, Kraków, Poland
autor
  • AGH, University of Science and Technology, Kraków, Poland
autor
  • Center for Chronological Research, Nagoya University, Nagoya, Japan
autor
  • GADAM Centre, Institute of Physics, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. Awsiuk R. and Pazdur M.F., 1986: Regional Suess effect in Upper Silesia urban area. Radiocarbon 28: 655-660.
  • 2. Craig H., 1957: Isotope standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica and Cosmochimica Acta 12: 133-49.
  • 3. Florkowski T., Grabczak J., Kuc T. and Różański K., 1975: Determination of radiocarbon in water by gas or liquid scintillation counting. Nucleonika 20(11-12): 1053-1066.
  • 4. GLOBALVIEW-CO2, 2003: Cooperative Atmospheric Data Integration Project – Carbon Dioxide. CD-ROM, NOAA CMDL, Boulder, Colorado (Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW).
  • 5. Kitagawa H., Masuzawa T., Nakamura T. and Matsumoto E., 1993: A batch preparation method for graphite targets with low level background for AMS 14C measurements. Radiocarbon 35: 295-300.
  • 6. Krajcar-Bronić I., Horvatinèić N., and Obelić B., 1998: Two decades of environmental isotope records in Croatia, Reconstruction of the past and prediction of future level. Radiocarbon 40(1): 399-416. Fig. 3. Values of fossil component Cf calculated using data from tree rings from Nagoya and Kraków and atmospheric CO2 at the Kraków sampling sites. Data from Nagoya represent annual average value and data from Kraków represent average value for period April to September in every year. 68 RADIOCARBON CONCENTRATION IN URBAN AREA
  • 7. Kuc T., 1991: Concentration and carbon isotope composition of atmospheric CO2 in southern Poland. Tellus 43B: 373-378.
  • 8. Kuc T. and Zimnoch M., 1998: Changes of the CO2 sources and sink in polluted urban area (southern Poland) over last decade, deriving from the carbon isotope composition. Radiocarbon 40(1): 417-23.
  • 9. Kuc T., Różański K., Zimnoch M., Nêcki J.M. and Korus A., 2003: Anthropogenic emissions of CO2 and CH4 in an urban environment. Applied Energy, 75: 193-203.
  • 10. Levin I. and Kromer B., 1997: Twenty years of high-precision atmospheric 14CO2 observation at Schauinsland station, Germany. Radiocarbon 39(2): 205-218.
  • 11. Levin I., Graul R. and Trivett N.B.A., 1995: Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B: 23-34.
  • 12. Levin I., Bösinger R., Bonani G., Francey R.J., Kromer B., Münnich K.O., Suter M., Trivett N.B.A. and Wölfli W., 1992: Radiocarbon in atmospheric carbon dioxide and methane: Global distribution and trends. In: Taylor R.E., Long A., Kra R.S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 503-518.
  • 13. McNeely R. 1994: Long-term environmental monitoring of 14C levels in Ottawa region. Environment International 20(5): 675-9.
  • 14. Meijer H.A.J., van der Plicht H., Gislofoss J.S. and Nydal R., 1995: Comparing long-term atmospheric 14C and 3 H records near Groningen, the Nederlands with Fruholmen, Norway and Izana, Canary Islands 14C stations. Radiocarbon 37(1): 39-50.
  • 15. Muraki Y., Kocharov G., Nishiyama T., Naruse Y., Murata T., Masuda K. and Arslanov Kh.A., 1998: The new Nagoya Radiocarbon Laboratory. Radiocarbon 40(1): 177-182.
  • 16. Muraki Y., Masuda K., Arslanov Kh.A., Toyoizumi H., Kato M., Naruse Y. and Nishiyama T. 2001: Measurement of radiocarbon content in leaves from some Japanese sites. Radiocarbon 42(2B): 695-701.
  • 17. Nakamura T., Niu E., Oda H., Ikeda A., Minami M., Takahashi H., Adachi M., Pals L., Gottdang A. and Suya N., 2000: The HVEE Tandetron AMS system at Nagoya University. Nuclear Instruments and Methods in Physics Research B 172: 52-57.
  • 18. NOAA Climate Monitoring and Diagnostics Laboratory, 2001: WEB site: . Accessed 2003 Oct 10.
  • 19. Nydal R and Lövseth K, 1996: Carbon-14 measurement in atmospheric CO2 from Northern and Southern Hemisphere sites, 1962- 1993. Oak Ridge National Laboratory NDP-057.
  • 20. Rakowski A.Z., Pawełczyk S. and Pazdur A., 2001: Changes of 14C concentration in modern trees from Upper Silesia region, Poland. Radiocarbon 43(2B): 679-689.
  • 21. Stuiver M. and Polach H A., 1977: Discussion: Reporting of 14C data. Radiocarbon 19(2): 355-363
  • 22. Stuiver M. and Quay P., 1981: Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters 53: 349–62.
  • 23. Suess H.E., 1955: Radiocarbon concentration in modern wood. Science 122: 415.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0025-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.