PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of asynchronicity in the amplitude modulation domain

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A just noticeable time delay (JNTD) between the onset of a single sinusoidal amplitude modulation (AM) and a complex modulation applied to the same carrier was measured in this study. The carrier was a 4-kHz tone and the modulator was a five-component multitone complex. In the first experiment, four of five components had constant frequencies, i.e. 160, 170, 180, 190 Hz and they were turned on synchronously (synchronous components) in the middle of the carrier duration. The frequency of the fifth component (asynchronous one) varied from 10 to 150 Hz and it was turned on earlier than the synchronous ones. In the second experiment, the asynchronous component was situated in the centre of the synchronous components' spectrum; its frequency was constant and equal to 100 Hz. The spectral separation between the asynchronous component and the synchronous ones of the modulator varied. The results, i.e. the just noticeable time delay between the onset of a single sinusoidal amplitude modulation and a complex modulation (or asynchrony threshold), are analogous to those obtained in the audible frequency domain. They can be interpreted on the basis of the auditory system model containing a bank of modulation filters. It seems that two separate mechanisms are responsible for the JNTD between the onset of the single component modulation and the complex modulation. The first one results from an interaction between all the components of a modulator passing a single modulation filter tuned to the frequency of the asynchronous component. This sort of interaction (or masking) was most effective when the spectral separation between the asynchronous component and the synchronous ones was the smallest one. With an increase in this separation, a significant decrease in the asynchrony thresholds was observed. The second mechanism determining the obtained asynchrony thresholds is based on the uncertainty principle: modulation filters with good frequency selectivity, i.e. filters tuned to low modulation rates, are characterised by a poor time resolution. Thus, in the case of the lowest frequencies of the asynchronous component the subjects' performance would be relatively poor even when there was a significant spectral interval between this component and the synchronous ones. As in the audible frequency domain, the pattern of the asynchronicity thresholds was related to the modulation filter bandwidth. The obtained results suggest the bandwidth of the modulation filters whose Q factor should be close to 1 or less.
Rocznik
Strony
291--307
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Adam Mickiewicz University, Institute of Acoustics, Umultowska 85, 61-614 Poznań, Poland
autor
  • Adam Mickiewicz University, Institute of Acoustics, Umultowska 85, 61-614 Poznań, Poland
autor
  • Adam Mickiewicz University, Institute of Acoustics, Umultowska 85, 61-614 Poznań, Poland
Bibliografia
  • [1] FLETCHER H., Auditory patterns, Reviews of Modern Physics, 12, 47-65 (1940).
  • [2] HALL J. W., HAGGARD M. P., FERNANDES M. A., Detection in noise by spectro-temporal pattern analysis, J. Acoust. Soc. Am., 76, 50-56 (1984).
  • [3] YOST W. A., SHEFT S., OPIE J., Modulation interference in detection and discrimination of amplitude modulation, J. Acoust. Soc. Am., 86, 2138-2147 (1989).
  • [4] MOORE, B. C. J., Wprowadzenie do psychologii słyszenia, I ed., PWN, Poznań 1999.
  • [5] SĘK, A. P., SKRODZKA E. B., Tuning in the amplitude modulation rate domain, Archives of Acoustics, 23, 4, 491-498 (1998).
  • [6] BACON S. P., GRANTHAM D. W., Modulation masking: effects of modulation frequency, depth and phase, J. Acoust. Soc. Am., 85, 2575-2580 (1989).
  • [7] HOUTGAST T., Frequency selectivity in amplitude-modulation detection, J. Acoust. Soc. Am., 85, 1676-1680 (1989).
  • [8] LEMAŃSKA J., SĘK A. P., RYBICKA W., Masking in the modulation rate domain, Archives of Acoustics, 28, 3, 181-189 (2003).
  • [9] SĘK A. P., MOORE B. C. J., Testing the concept of a modulation filter bank: the audibility of component modulation and detection of phase change in three-component modulators, J. Acoust. Soc. Am., (2003).
  • [10] LEMAŃSKA J., SĘK A. P., SKRODZKA E. B., Amplitude modulation rate discrimination, Archives of Acoustics, 27, 1, 3-21 (2002).
  • [11] SĘK, A. P., MOORE B. C. J., Mechanisms of modulation gap detection, J. Acoust. Soc. Am., 111, 6, 2783-2792 (2002).
  • [12] REES A., MOLLER A. R., Responses of neurons in the inferior colliculus of the rat to AM and FM tones, Hearing. Res., 10, 301-310 (1983).
  • [13] KAY R. H., Hearing of modulation in sounds, Physiol. Rev., 62, 894-975 (1982).
  • [14] LORENZI C., MICHEYL C., BERTHOMMIER F., Neuronal correlates of perceptual amplitude-modulation detection, Hearing Research, 90, 219-227 (1995).
  • [15] PALMER A. R., Neural signal processing, [in:] Hearing, MOORE B. C. J., [Ed.], Academic Press, San Diego, p. 75-121, 1995.
  • [16] VIEMEISTER N. F., Temporal modulation transfer functions based on modulation thresholds, J. Acoust. Soc. Am., 66, 1364-1380 (1979).
  • [17] EWERT S. D., VERHEY J. L., DAU T., Spectro-temporal processing in the envelope-frequency domain, J. Acoust. Soc. Am., (2002).
  • [18] LORENZI C., SOARES C., VONNER T., Second-order temporal modulation transfer function, J. Acoust. Soc. Am., 110, 1030-1038, 2001.
  • [19] EWERT S. D., et al., Spectro-temporal processing of amplitude modulation, [in:] Euro GK "Psychophysics, physiology and models of the central auditory system", 2001.
  • [20] ŻERA J., GREEN D. M., Effect of signal component phase on asynchrony discrimination, J. Acoust. Soc. Am., 98, 817-827 (1995).
  • [21] ŻERA J., GREEN D. M., Detecting temporal onset and offset asynchrony in multicomponent complexes, J. Acoust. Soc. Am., 93, 1038-1052 (1993).
  • [22] ŻERA J., Percepcja niesynchroniczności składowych widmowych wielotonów, CIOP, Warszawa 2001.
  • [23] OZIMEK E., SĘK A., Perception of irregular frequency changes of sinusoidal signal, Acustica, 66, 146-152 (1988).
  • [24] MOORE B. C. J., SĘK A. P., Effects of relative phase and frequency spacing on the detection of three-component amplitude modulation, J. Acoust. Soc. Am., 108, 5, 2337-2344 (2000).
  • [25] LEVITT H., Transformed up-down methods in psychoacoustics, J. Acoust. Soc. Am., 49, 467-477 (1971).
  • [26] PICKLES J. O., An introduction to the physiology of hearing, 2nd Ed., Academic Press, London 1988.
  • [27] DAU T., Modeling auditory processing of amplitude modulation, University of Oldenburg, 1996.
  • [28] DAU T., KOLLMEIER B., KOHLRAUSCH A., Modeling auditory processing of amplitude modulation: I. Detection and masking with narrowband carriers, J. Acoust. Soc. Am., 102, 5, 2892-2905 (1997).
  • [29] DAU T., KOLLMEIER B., KOHLRAUSCH A., Modeling auditory processing of amplitude modulation: II. Spectral and temporal integration, J. Acoust. Soc. Am., 102, 5, 2906-2919 (1997).
  • [30] YOST W. A., SHEFT S., Across-critical-band processing of amplitude-modulated tones, J. Acoust. Soc. Am., 85, 848-857 (1989).
  • [31] EGAN J. P., HAKE H. W., On the masking pattern of a simple auditory stimulus, J. Acoust. Soc. Am., 22, 622-630 (1950).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0025-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.