PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positioning with interactice navigational structure implementation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most essential outcome of theoretical studies and selected numerical analyses, presented in this work, are the suggestions related to the technology of producing and working out the results of observations, carried out in the Interactive Navigational Structures. Implementing such a Structure into navigation practice will enable supporting the positioning process by taking use of objects, which until present, in classic navigation, have been omitted due to a lack of information about their coordinates. Establishing and dynamic developing the Interactive Navigational Structures is of special importance, in case the available positioning systems appear insufficient (e.g. in submarine navigation or any work of special character). IANS can be based on various systems and navigational observations, including the satellite GPS systems. Selection of an observational model, accommodated to any current navigational situation, is simplified owing to the decisive functions, recommended in the work; applying the above functions, in conjunction with the functions of attenuation, has resulted in making more efficient the process of estimation, robust for out-lying observations. Due to diversity of the observations sets and the "by stages" way of working them out, the estimation is of sequential character (sequential robust estimation). The adjustment task, formulated and resolved in this work, has been related to the method and adjusted to the IANS chain being under development. The fundamental elements of this task's function of target are, the suggested in the work, the equivalent-decisive covariance matrix and equivalent-decisive weights matrix, both connected by statistical model. The method of identification of not only out-lying observations but also out-lying adjustment points and neutralization of an influence thereof is also advised in the work; the method has been resulted from free adjustment and M-estimation principles. The method, named hybrid M-estimation, can make a great difference specially in extreme navigation conditions, carried out basing intensely on points of the set R. The numerical tests, described in Chapter 6, refer to simulation of elementary navigational situations, connected with developing IANS and using thereof. They are to illustrate principal properties of the suggested conceptions. The results of the first of the tests have confirmed a possibility of taking use of the recommended structures in some special tasks of navigation at sea. Extremely interesting properties (the second test), first of all those of robust character, were revealed by hybrid M-estimation. The obtained results have proved that there is a chance to carry out reliable navigation, being compelled only to applying of IANS. The presented conceptions have been basically completed in respect of the theory concerning establishing, developing and mathematical working out the Interactive Navigational Structures. However, the work is incomprehensive in regard to practical implementation of the displayed models. For example, there is a possibility to use the described structures in submarine navigation. A lack of any classic navigational systems in sea depth has been forcing to seek new solutions, as the Interactive Navigational Structure is. The above solutions may also be extensively employed in radar navigation. Radar observations are often biased with gross errors, caused by radar echo generation technique. The robust estimation, if applied in the version presented in this work, may significantly improve final determinations' standard. The recommended mathematical models and methods of their parameters evaluation are applicable to maritime navigation under a certain condition. The available at present nautical information about navigational signing elements should be complemented. All the suggested solutions may not be in today's situation fully exercised (especially hybrid M-estimation) due to a lack of information about covariance matrixes or at least about errors of determining coordinates of stable and floating navigational signs, embraced by any optional navigational system.
Rocznik
Tom
Strony
1--119
Opis fizyczny
Bibliogr. 67 poz., rys., tab.
Twórcy
  • Naval University of Gdynia
Bibliografia
  • 1. Aitken A.C. 1935. On Least Squares and Linear Combination of Observations. Proc. Roy.Soc.Edin.A,55
  • 2. Andrew et al. 1972. Robust Estimation of Location. Princeton University Press., USA
  • 3. Baran W.L. 1999. Theoretical Basis for Working out Survey Results (in Polish). PWN, Warsaw, Poland
  • 4. Borre K., J, Jorgensen P.C., Kubik K. 1983. Robust Adjustment of the Danish Fundamental Triangulation Network. Zeszyty Naukowe Akademii Górniczo – Hutniczej im. Stanisława Staszica no. 79, pp: 57 - 69, Cracov, Poland
  • 5. Caspary W., Haen W. 1990. Simultaneous Estimation of Location and Scale Parameters in the Context of Robust M-estimation. Manuscripta Geodaetica no. 15, pp 273 – 282, Italy
  • 6. Czaplewski K. 1998. The Coverage Zone of the Positioning System Using the Quotient of Distances as a Navigational Parameter. Proceeding of XIth International Scientific – Technical Conference „The Part of Navigation in Human Activity on the Sea”, pp 73 – 83, Gdynia, Poland
  • 7. Czaplewski K. 1999. Optimization of the System Operating on Basis of the Quotient of Distances (in Polish). Doctoral Thesis, AMW, Gdynia, Poland
  • 8. Czaplewski K. 2000a. The Integral Criterion as a Mathematical Tool Supporting the Optimization Process of Establishing the Navigational System Stations (in Polish). ZN AMW no 3/2000, pp 5 – 17, Gdynia, Poland
  • 9. Czaplewski K. 2000c. Applying the Sequential Methods of Survey Adjustment for Determination of a Number of the Navigational System Stations (in Polish). Proceeding of XIIth International Scientific – Technical Conference „The Part of Navigation in Human Activity on the Sea”, pp 62-73, Gdynia, Poland
  • 10. Czaplewski K. 2002a. The Method of Using Information of Ship Moving During Fixing the Landmark Position. Revista del Instituto de Navegacion de Espana nr 16/2002, pp: 42 – 52, Barcelona, Spain
  • 11. Czaplewski K. 2002b. The Proposed Method of Filling Navigational Net on Unknown Land Marks. Annual of Navigation, no 4/2002, pp: 33 – 44, Gdynia, Poland
  • 12. Czaplewski K. 2002c. The Optimization Method of Location Autonomous Element of the Aids to Navigation. The Report of Geodesy no 1/2002, pp: 217-227, Warsaw, Poland
  • 13. Czaplewski K. 2003a. The Observable Ship Position at Sea Determined by the Usage of the Danish Attenuation Function. Revista del Instituto de Navegacion de Espana no. 19/2003, pp 88-99. Barcelona, Spain
  • 14. Czaplewski K. 2003b. Method of Expanding of Set of Costal Aids to Navigation. Atti dell’ Facoltá di Scienze e Tecnologie, tom LXVII, pp 71 – 85, Neapol, Italy
  • 15. Czaplewski K. 2003c. Use of Robust Estimation Methods in Navigation (in Russian). Navigation and Hydrography no 17/2003 pp 79 – 95, St. Petersburg, Russia
  • 16. Czaplewski K. 2004a. Weakening the Significance of False Measurements in Maritime Navigation. The European Journal of Navigation no. 1/2004, pp 44–52, Lemmer, Netherlands
  • 17. Czaplewski K. 2004b. Using Robust Sequence Estimation In Maritime Navigation. Revista del Instituto de Navegacion de Espana (in printing), Barcelona, Spain
  • 18. Czaplewski K., WĄŻ M. 2004. The Using of the Neural Networks and Robust Estimation Methods in Radar Navigation. Navigation and Hydrography no 18/2004 (in printing), St. Petersburg, Rosja
  • 19. Czaplewski K., Wiśniewski Z. 1999a. Positionning Accuracy and Costs of Establishing the System as the Optimization Criteria Applicable for Determination of a Number of the Quotient Navigational System Stations (in Polish). ZN AMW no 3/1999, pp: 5 – 18, Gdynia, Poland
  • 20. Czaplewski K., Wiśniewski Z. 1999b. The Supernumerary Observations in the Quotient Navigational System as the Accuracy ImprovingFactor in the Open Arrangement (in Polish). ZN AMW no 3/1999, pp: 19 - 28, Gdynia, Poland
  • 21. Czaplewski K., Wiśniewski Z. 2002. The Proposed Method of Expanding the Navigation System During the Near-Shore Navigation. Proceeding of XIIIth International Science - Technical Conference “The Part of Navigation in Support of Human Activity on the Sea”, pp: 461 – 471, AMW, Gdynia, Poland
  • 22. Czaplewski K., Wiśniewski Z. 2003a. Fixing the Observable Ship Position with the Usage of Danish Attenuation Function. The Report of Geodesy no 1/2003, pp: 287-295, Warsaw, Poland
  • 23. Czaplewski K., Wiśniewski Z. 2003b. The Usage of the Interactive Navigational Structure and the Robust Estimation for Fixing Sea Object Position. Proceeding of 11th IAIN World Congress, Berlin, Germany
  • 24. Czaplewski K., Wiśniewski Z. 2003c. The Usage of Robust Sequence Estimation in Interactive Navigation Structures. ZN WSM Szczecin no 70, pp 37 – 53, Szczecin, Poland
  • 25. Felski A. Urbański J. 1994. Acquisition,Processing and Circulation of Information in Vessel Navigation Process (in Polish). Proceeding of IXth International Scientific – Technical Conference „The Part of Navigation in Human Activity on the Sea”, AMW, Gdynia, Poland
  • 26. Górski S., Jackowski K., Urbański J. 1990. Assessment of Navigating Accuracy (in Polish). Wyższa Szkoła Morska, Gdynia, Poland
  • 27. Hampel F.R., Ronchetti E.M., Rousseeuw P.J, Stahel W.A. 1986. Robust Statistics. The Approach Based on Influence Functions. John Wiley & Sons, New York, USA
  • 28. Jianjun Z. 1996. Robustness and the Robust Estimate. Journal of Geodesy no. 70, pp 586 - 590, Heidelberg, Germany
  • 29. Kadaj R. 1984. Die Methode „der Besten Alternative“:Ein Ausgleichungs – prinzip für Bebactnssysteme. ZfV (6), Germany
  • 30. Kadaj R. 1988. Eine Verallgemeinerte Klasse von Schätzverfahren mit praktischen Anwendungen. Zietschrift für Vermessungswesen no. 113, pp: 157 – 166, Hannover, Germany
  • 31. Kamiński W. 2000. Bayes’ Robust Estimation in Geodetic Network Adjustment (in Polish). Wydawnictwo Uniwersytetu Warmińsko Mazurskiego, Olsztyn, Poland
  • 32. Kaniewski P. 2003a. The Methods of Reducing Abnormal Survey Errors in the Integrated Navigational Systems (in Polish). Zeszyty Naukowe WSM Szczecin, pp 195 – 205, Szczecin, Poland
  • 33. Kaniewski P. 2003b. The Positioning System of an Autonomous Submarine (in Polish). ZN WSM Szczecin, pp 195 – 205, Szczecin, Poland
  • 34. Kopacz Z., Morgaś W., Urbański J.2003. Hydrogrphy: its Present State and Future Development. International Hydrographic Review vol. 4, no. 1, pp 69 – 76, Monaco
  • 35. Kopacz Z., Morgaś W., Urbański J.2003. The Ship’s Navigation Function, Ship’s Navigation Process, Navigation Information. The Journal of Navigation no. 1/2003 pp 101-109, Great Britain
  • 36. Kopacz Z., Urbański J. 1998. The Navigation of the beginning of the 21-st Century. Geodezja i Kartografia no XLVII, z.1-2, pp 59-68, Warsaw, Poland
  • 37. Kołaczyński S. 1995. Methodical and Accuracy Aspects of Employing the Ratio of Distances to Fixing Position Coordinate. Acta Acad. Agricult.Techn.Olst., Geodaesia et Ruris Regulatio, no. 25, Supplementum A., Olsztyn, Poland
  • 38. Krarup K., Kubik K. 1982. The Danish Method: Experience and Philosophy. Deutsche Geodätische Komission bei der Bayerischen Akademie Wissen, Reihe A, Heft 98, Monachium, Germany
  • 39. Jurdziński M., Urbański J. 1994. Maritime Navigation as Knowledge, Science and Ship Navigating Process (in Polish). ZN AMW, no 3/1994, Gdynia, Poland
  • 40. Meller R., Wąż M. 2003. Determination of Ship’s Position by Way of Matching a Radar Image with a Nautical Chart Using a Multilayer Perceptron. International Radar Symposium, pp 701 – 706, Drezno, Germany
  • 41. Mięsikowski M. 2002. Research on the Ship’s Movement Affecting the Analythic Starpdown Gyro-Compass Indications Accuracy (in Polish). Doctoral Thesis, AWM, Gdynia, Poland
  • 42. Mittermayer E. 1972. Zur Ausgleichung freier Netze. ZfV, Heft 11.
  • 43. Perelmuter A. 1979. Adjustment of Free Networks. Biulletin Géodésique, no. 53
  • 44. Perelmuter A. 1980. Eine Modifizierung der Helemrt – Wolf – Lösung des Problems der Freien Netze und einige Anwendungen. ZfV, 3
  • 45. Praczyk T., Wąż M. 2003. The Gulf of Gdańsk Radar Signing Effect of Accuracy of a Position Determined with the Comparison Methods (in Polish). ZN WSM Szczecin nr 70, pp 299 -309, Szczecin, Poland
  • 46. Rao C. 1982. Linear Models in Mathematical Statistics (in Polish). PWN, Warsaw
  • 47. SACLANTCEN. 2002. Annual Progress Report 2002. Undersea Research Centre of NATO. La Spezia, Włochy
  • 48. SEA TECHNOLOGY 2003. Sounding: HUGIN AUV Operation in NATO Exercise. page 9. Arllington, VA, USA
  • 49. Sikorski K. 1979. The Sequential Methods of Adjusting Modernized Surface Geodetic Networks (in Polish). ZN ART no. 8, Olsztyn, Poland
  • 50. Sikorski K. 1991. Application of the Sequential Adjustment Methods in Primary Accuracy Analyses (in Polish). ZN Politechniki Śląskiej no. 76, pp 35 - 43, Wrocław, Poland
  • 51. Stateczny A. Urbański J. 1996. Maritime Navigation as a Process of Navigational Information Processing (in Polish). ZN AMW no 1/1996, Gdynia, Poland
  • 52. Świątek K., Wiśniewski Z. 1983. Adjustment of the Independent Geodetic Networks and Algorithmization of Computations (in Polish). Geodezja i Kartografia z.2, Warsaw, Poland
  • 53. Szubrycht T. 2002. Methodical and Accuracy’s Aspects of Adjustment of the Observed Ship’s Position, Determined Basing on the Ramark System (in Polish). Doctoral Thesis, AMW, Gdynia
  • 54. Szubrycht T., Wiśniewski Z. 2003. Navigational and Accuracy’s Aspects of the Elementary and Developed Observational System (in Polish). ZN AMW no 3/2003, pp 137 – 155, Gdynia, Poland
  • 55. Urbański J., Kopacz Z., Posiła J. 2000. Maritime Navigation (in Polish). AMW, Gdynia, Poland
  • 56. Wiśniewski Z. 1989. Estimation of Local Variance Coefficients in Adjustment of Geodetic Networks. Bollettino di Geodesia e Scienze Affini, ANNO XLVIII – no.2, Włochy
  • 57. Wiśniewski Z. 1999. A Concept of Robust Estimation of Variance Coefficient (VR - estimation). Bollettino di Geodesia e Scienze Affini, ANNO LVIII – no.3, Włochy
  • 58. Wiśniewski Z. 2000. Matrixes Algebra and Mathematical Statistics in the Adjustment Calculus (in Polish). ART, Olsztyn, Poland
  • 59. Wiśniewski Z. 2002. Conceptions of Working Out the Navigational Survey Results (in Polish). AMW, Gdynia, Poland
  • 60. Wiśniewski Z. 2004. The Methods of Working Out Survey Results in Navigation and Hydrography (in Polish). AMW, Gdynia, Poland
  • 61. Wolf H. 1972. Helmerts Lösung zum Problem der Freien Netze mit Singulärer Normalgleichungsmatrix. ZfV,5., Germany
  • 62. Wolf H. 1979. Singulärer Kovarianzen in Gauß–Helmert-Modell. ZfV,10., Germany
  • 63. Yang Y. 1994. Robust Estimation for Dependent Observations. Manuscripta Geodaetica no. 19
  • 64. Yang Y. 1997. Estimators of Covariance Matrix AT Robust Estimation Based on Influence Functions. ZfV, Helf 4, Germany
  • 65. Yang Y., Cheng M.K., ChuM C.K., Tapley B.D. 1999. Robust Estimation of Systematic Errors of Satellite Laser Range. Journal of Geodesy no. 73, pp 345 – 349, Heidelberg, Germany
  • 66. Yang Y., Song L., Xu T. 2002. Robust Estimator for Correlated Observations Based on Bifactor Equivalent Weights. Journal of Geodesy nr 76, pp 353 – 358, Heidelberg, Germany
  • 67. Zhong D. 1997. Robust Estimation and Optimal Selection of Polynomial Parameters for the Interpolation of GPS Geoid Heights. Journal of Geodesy no. 71, pp 552 – 561, Heidelberg, Germany
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0025-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.