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ABSTRACT  This article presents possible applications and 
a methodology of creating an expert system for the evaluation of sailing ship 
safety in a restricted area that may be utilized by vessel traffic service (VTS) 
centres. Problems of acquisition of navigators’ knowledge relating to the 
evaluation of moving ship safety are discussed. The knowledge acquired has 
been implemented in an expert system with the NEXPERT OBJECT program 
– a tool of the shell type for building expert systems. Possible applications of 
this type of systems in VTS centres are indicated. 

INTRODUCTION 
Implementation of the latest technological solutions in marine navigation has 

been continually enhancing navigational safety standards. More and more 
importance is put on wider use of the knowledge of expert-navigators through 
relevant methods and artificial intelligence tools. Measures are taken to support 
planning, supervision and handling of a vessel by means of systems using 
knowledge bases. An alternative tool for that purpose are expert systems, built from 
scratch or based on the so-called expert system shells [Grabowski, 1990]. 
The determination of their operating range (generally a narrow one) as well as the 
acquisition and representation of navigators’ knowledge for such systems are basic 
problems to be solved. It is obvious that such systems should operate correctly, 
be universal, capable of self-analysis and updating their knowledge base [Mulawka, 
1996]. In addition to expert systems, other systems may be used for the purpose: 
artificial neural networks, fuzzy systems, or, in search for optimal solutions, genetic 
algorithms might be useful. Vessel traffic service centres (VTS or their extended 
version – VTMS) are a major area of application of this type of expert systems. 
The operational objective of the expert system in this context is to support decisions 
made by VTS operators. 
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FUNCTIONS AND TASKS  
OF ADVISORY DECISION-AIDING SYSTEMS IN VTS CENTRES 

VTS SYSTEM TASKS 

Vessel traffic service systems play a vital role in enhancing the safety of 
navigation in congested areas. The systems are capable of monitoring vessel traffic, 
which allows their operators to execute their principal tasks [Guidelines]: control of 
vessel traffic, supervision of navigational services and co-ordination of rescue 
operations.  

The systems enable, inter alia: 
• display in an electronic chart or raw video mode, 
• track processing, 
• communications with a radar subsystem, 
• operator control of radar devices, 
• recording of radar video, radar tracks, status and other data, 
• interchange of data with an external database system. 

Principal tasks of VTS operators include tracking and evaluating the current 
navigational situation, advising vessels on dangers to the vessel traffic. This function 
is performed by warning alarms activated when, e.g. a vessel enters a prohibited area 
or deviates from its designated traffic lane. Multitudes of situations impose 
difficulties in accounting for all-important factors. The are no tools enabling an 
uptodate automatic evaluation of the situation in view of detecting potential threats 
and avoiding accidents. 

An expert system may provide vital assistance in supporting decisions taken by 
VTS operators. Such a system would feature a function of port regulations 
observance control, algorithms of vessel motion optimization which solve problems 
of conflict situations and tools for evaluating navigational safety in a fairway. 

APPLICATIONS OF EXPERT SYSTEMS IN VTS SYSTEMS 

Possible expert system applications in the systems of vessel traffic service 
result directly from the functions and tasks of the latter and include: 
• supervision of compliance with traffic regulations in the area, 
• optimization of vessel traffic in the area, 
• current analysis and evaluation of the navigational safety, 
• identification of dangerous situations, 
• decision support in emergency situations, 
• co-ordination of actions to be taken in emergency situations, 
• collision avoidance. 
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The choice of expert systems for monitoring regulations observance in a given 
area is justified - such regulations and rules are quite complex and change in time 
(as the vessel proceeds). In this case constructing a knowledge base consists in 
transforming rules contained in traffic regulations into a form suitable for an expert 
system metalanguage. 

The optimization of vessel traffic is dictated by safety reasons as well as 
economic factors, connected with the costs of vessel berthing and services in a port. 
The determination of an optimal ship motion schedule in a specific area accounting 
for limitations caused by other ships may be treated as a control theory problem: 
determine vi(t), whilst the limitations are satisfied, so that the times of waiting for 
port entry and passage through a given area are minimized. As a rule, limitations 
taken into account are those resulting from the regulations in force and the 
availability of facilities needed to execute a transportation task (free berth, tugs etc.) 
[Furstenberg, 2000]. Simple models of vessel movement prediction are usually used 
to solve the problem. 

Most VTMS systems are capable of generating warning alarms when pre-
defined dangerous situations occur, e.g. entering an area closed for navigation. 
However, these systems do not analyze or evaluate the current situation; they do not 
detect potentially dangerous situations in advance. These functions are 
a responsibility of VTS operators. 

Emergency procedures are understood as algorithmized procedures to be 
followed in specific emergency situations. One example of this is an expert system 
incorporating procedures for dangerous goods carriage. The expert system in this 
case has to identify a threat and generate procedures to be followed in a given 
situation. An extended version of such a system is a decision support system, which 
enables a choice of procedures accounting for, assumed criteria and their priorities. 

The problem of collision avoidance, namely collision avoiding manoeuvres, 
may be difficult because in restricted areas a range of possible manoeuvres is often 
limited. If a dangerous situation is detected too late, a collision will be imminent, but 
actions may be taken to minimize the effects. Consequently, the analysis and 
evaluation of a navigational situation play a key role. The current change trend 
provides a basis for the identification of dangerous situations. This function may be 
performed by an expert system. VTS systems have an open architecture so the 
application of typical data transmission interfaces makes it possible to incorporate 
software operating in the expert system technology. Such programs enable effective 
evaluation of a fairway traffic situation and support of decisions on vessel traffic 
accounting for detailed rules of the regulations in force. 
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AN EXPERT SYSTEM FOR NAVIGATIONAL SITUATION 
EVALUATION 

EVALUATION OF A NAVIGATIONAL SITUATION 

The evaluation of navigational safety or risk is vital for VTS operators taking 
crucial decisions concerning vessel traffic. In most vessels systems the accepted 
criteria used are the closest point of approach (CPA) and the time to closest point of 
approach (TCPA). A situation is identified as a collision situation when the closest 
point of approach (CPA) is not maintained. These criteria, however, are difficult to 
apply in restricted areas, particularly in narrow channels or fairways. 

In assessing a traffic situation in a restricted water area the information on 
factors affecting the navigational safety of a ship is crucial. From the criteria 
resulting from the regulations in force in a given area and his own knowledge the 
VTS operator evaluates a situation. Basic parameters affecting the evaluation by 
a VTS operator are, in addition to ship and area dimensions, ship’s position and 
current course, speed and rate of turn, distance to a danger and external factors such 
as wind force and direction, current direction and speed. 

ASSUMPTIONS FOR AN EXPERT SYSTEM 

The task for the type of expert system in question may be formulated as 
a typical task of a diagnostic system: evaluation of the existing (navigational) 
situation, based on the available data. The system should have an essential property 
of being capable of explaining generated conclusions on the navigational safety. In 
[Pietrzykowski, 1997] the evaluation of navigational situations is presented, in 
which artificial neural networks with fuzzy logic are used. With specific 
navigational situations assessments done by experienced navigators, the process of 
network learning was performed. The network responses for specified input 
parameters made up a quantitative measure of navigational safety level. However, 
this method of non-symbolic representation of knowledge does not allow 
interpreting the navigational situation in the form of rules readable for the VTS 
operator who has to interpret the situation himself. It is vital to obtain evaluation 
criteria as clear as possible for the decision support system to be reliable. In this case 
criteria based on rules or decision trees are much more readable, as they enable 
classifying a situation. The adoption of an expert system based on rules necessitates 
a classification of situations and the specification of classification methods. The 
classification task for a specific ship i has the following form: 

K= f(pi,, pa,, pz,,, pr)     (1) 
where:  i – identifier of a vessel on the fairway 

pi - vessel i parameters, 
pa - area parameters, 
pz - parameters describing external conditions (visibility, wind, current). 
pr - parameters describing other traffic situation, 
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The following classification of a navigational situation has been assumed: 
• 2 classes: safe situation – dangerous situation 
• 3 classes: safe situation – intermediate situation – dangerous situation. 

This type of classification is a natural one as used by the human-operator. Since 
untypical, unrecorded situations not found in the knowledge base might occur, it 
seems purposeful to supplement the classification to include unidentifiable or non-
interpretable ones if the system is to operate correctly and reliably. 

ACQUISITION AND REPRESENTATION  
OF THE KNOWLEDGE OF EXPERT NAVIGATORS 

The acquisition and representation of navigators’ knowledge for the evaluation 
of navigational situations is a complex problem. Apart from taking into account 
formal local and international regulations, such as the International Regulations for 
the prevention of Collisions at Sea, often general enough to be interpreted 
differently, navigators use their own experience. The experience is difficult to be 
translated into unequivocal rules or decision trees. That is why attempts are aimed at 
automatic knowledge acquisition. Principal methods of acquiring rules include 
interviews with experts, mathematical models and machine learning, which consists 
in obtaining rules from examples. The latter requires gathering data containing 
decisions of experts and conditions that affected a specific decision. Then certain 
methods are used to identify regularities in a data set and to generate decision rules 
identical with the decisions made by an expert. There are various methods and tools 
for data exploration: statistics, fuzzy set theory, approximated sets theory, analysis 
of concentrations, artificial neural networks or genetic algorithms. 

In [Pietrzykowski, 2000] a method was proposed for acquiring knowledge and 
decision rules from expert studies based on simulated research utilizing algorithms 
of machine learning: FOIL and C4.5 [Quinlan, 1990, 1993]. 

Both systems take a data set as input and develop a symbolic “theory” to 
explain the data. The data set consists of examples, where one “example” is 
a snapshot of a ship at a particular point in time (position, heading, etc.), plus 
a classification (e.g., safe/dangerous). A “theory” explains the data if it can 
reproduce the classifications. Theories are normally developed and tested by taking 
the available data, partitioning it randomly into two sets, “learning” a theory with 
one set, and testing the theory with the other set. 

C4.5 is a learning algorithm that generates decision-trees from a set of data. 
Conceptually, all data begin at the root of the tree. The data are split according to 
some criterion into subsets; for example, if the criterion were “course heading 5 
degrees” then examples with values less than this would be in one group, and 
examples with values greater than this would be in the second. The subsets are then 
split according to a second criterion, and the process continues with the goal of 
creating groups that are all of the same class (for example: dangerous/safe). 
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The second algorithm, FOIL, works very differently, producing a series of 
logical rules like one might encounter in an expert system. The goal is the same: to 
separate the data according to their evaluation as dangerous or safe. The rules can be 
written from either viewpoint, dangerous or safe, and define the criteria that must be 
met for the classification to be correct. For example, one rule for “dangerous” might 
require the ship to be within 10 meters of the shore. The system begins with an 
empty rule-set, and develops rules one after the other until it has covered as many 
examples in the data as possible. 

While both algorithms try to perfectly partition the data according to the 
classification, this may not be completely achievable. First, the data may be 
internally inconsistent – this is often the case when the classifications in the data are 
subjective, as is the case here. Second, it may not be desirable, as there is a danger 
of “overspecialization”, and learning algorithms are designed to avoid this even if it 
means an imperfect classification. 

Overspecialization happens when data are sparse. Suppose that a learning 
system has come to the point where the theory “almost” explains the data. Any 
further changes will accommodate single examples. Since examples may differ on 
many attributes, there is no way for the system to be certain which attribute is 
relevant, since it is working with single examples. Which means that there is a real 
danger that the system will pick the wrong attribute, and create a theory that works 
for the training data, but is actually erroneous. 

RESEARCH 

EXPERT RESEARCH 

The values of navigational safety were acquired in simulated passages in 
a restricted area by expert research methods. The assumed assessment was a real 
value from the <0, 1> interval, where the value 0 means a safe situation, while ‘1‘ 
means a dangerous situation. Simulated ship passages were performed on a Ship 
Handling Simulator NMS-90. 

A model of a bulk carrier 95.5-m in length, 18.2-m beam and 5m draft was used 
in the research. The vessel proceeded at 8 knots. The area comprised a straight 
stretch of a fairway 200 meters wide. Participants had various shipboard 
experiences: captains, 3rd class deck officers as well as navigators with short sea 
service. They assessed (real value from the <0, 1> interval) navigational situations at 
15 second intervals. During the simulated passages certain values were recorded 
automatically, e.g. deviation from the recommended course, deviation from the 
fairway axis, ship‘s rate of turn. 
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Fig. 1. A navigational situation on the fairway:  

v – ship’s speed,  
∆y - shift from the fairway axis,  
∆φ-deviation from the recommended course, 
 ω- ship‘s angular speed. 

 

 The positive values were assumed to denote a shift to starboard from the 
fairway centre line (axis), deviation from the recommended course to starboard and 
ship‘s rate of turn to starboard relative to the ship’s centre line while negative values 
denote respective changes to the port side. 

From the recorded data and evaluations of particular situations performed by 
experts an attempt was made to develop readable criteria of evaluation in the form of 
rules and decision trees. 

KNOWLEDGE ACQUISITION 
The research aimed at defining evaluation criteria from the facts gathered 

during an experiment. The criteria are supposed to identify a navigational situation 
as one of the two or three categories: safe – dangerous and: safe – intermediate - 
dangerous. For the evaluations to be objective mean values of evaluations of 
particular situations were taken into account. These mean values were determined 
from the evaluations of individual experts (a group of 6 navigators – master 
mariners) 300 facts were recorded in total. The acquisition of rules and decision 
trees was executed for 85 % of the facts, with the 15% randomly chosen facts left 
for verification. 

The following form of a classification task K with n classes (K={k1,..., kn}) was 
adopted: 

K= f(pi, ∆yi, ∆φi, ωi)     (2) 
where:  i – ship’s identifier on the fairway 

pi – ship’s i parameters, 
∆yi – ship’s i deviation from the fairway centre line [m], 
∆φi – ship’s i deviation from the preset course [°], 
ωi – ship’ i rate of turn [°/min.]. 
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The classification was performed for the situation categories specified in 
section 3.2. 

FOIL 
This algorithm allows generating logical rules for the task of classifying data 

into two classes (areas). The generated rules describe criteria for assigning data to 
a given class; data, which do not meet those criteria, belong to the other class. The 
algorithm, from the set of relations classified into the selected class kj: 

(pi, ∆yi, ∆φi, ωi)     (3) 

produces the rules in the form of Horn clause definitions. For the ship i described by 
parameters pi the rules are as follow: 

kj(∆yi, ∆φi, ωi): if constraint∆y(∆yi) and constraint∆φ(∆φi) and constraintω(ωi) (4) 

where constraint∆y, constraint∆(and constraint(describe, respectively, constraints for 
the current variables ∆yi, ∆φi, ωi. 

This method excludes separating a larger number of classes at one time, e.g. 
a class of intermediate situations. Therefore, the following partition has been 
assumed: 
1) class I: facts for the evaluation of a navigational situation in the <0, 0.5> range – 

safe situation 
2) class II: facts for the evaluation of a navigational situation in the <0.5, 1> range 

– dangerous situation. 
Figures 2 and 3 present rules for classes i and II. 
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-25.52.
=20.09.
>-7.

.

Safe_situation(dy,dfi,omega) : If dy<=27.69 and >-16.83 and omega>-8.9.
Safe_situation(dy,dfi,omega) : If  dy<=27.69 and dfi<=7.9and omega<=-9.2.
Safe_situation(dy,dfi,omega) : If  dy>-32.04 and dy<=11.4 and dfi>-2.4.
Safe_situation(dy,dfi,omega) : If  dfi<=-2.5 and dfi>-10.2 and dy<=34.21 and dy>
Safe_situation(dy,dfi,omega) : If  dy>-39.64 and dfi>4 and omega>-17.1 and dy<
Safe_situation(dy,dfi,omega) : If  dy>-32.04 and dy<=29.86 and dfi<=-3.1 and dfi
Safe_situation(dy,dfi,omega) : If  dy<=29.86 and dy>23.35 and omega>-9.7.
Safe_situation(dy,dfi,omega) : If  dy>35.29 and dy<=36.38 and omega>-14.9.
Safe_situation(dy,dfi,omega) : If  dfi<=0.5 and omega<=-25.5.
Safe_situation(dy,dfi,omega) : If  omega<=-13.4 and omega>-17.1 and dy<=28.78
Safe_situation(dy,dfi,omega) : If  dfi<=-3.8 and dfi>-4.6 and dy<=37.47.
Safe_situation(dy,dfi,omega) : If  dfi<=-8.2 and dfi>-11.8 and dy>-24.43.
Safe_situation(dy,dfi,omega) : If  omega<=-20.1 and omega>-21.7.
Safe_situation(dy,dfi,omega) : If  dfi>2.3 and dfi<=2.4 and dy>-37.47.
Safe_situation(dy,dfi,omega) : If  dfi<=-8.2 and dfi>-10.2.
Safe_situation(dy,dfi,omega) : If  dfi>4 and dfi<=4.1.

 
Fig. 2. Rules for the evaluation of a navigational situation for the classification of situations as:  

0 – safe; 1 – dangerous; class I; dy - deviation from the fairway centre line [m],  
dfi − deviation from the recommended course [°],  omega- ship‘s rate of turn [°/Min.]. 
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a>-15.7.

Dangerous_situation(dy,dfi,omega) : If dy<=-32.04 and dfi<=2.1.
Dangerous_situation(dy,dfi,omega) : If dy>29.86 and dfi<=5.8 and dfi>-1.4.
Dangerous_situation(dy,dfi,omega) : If dy<=-41.81.
Dangerous_situation(dy,dfi,omega) : If dy>34.21 and omega>-9.6 and dfi<=-1.4.
Dangerous_situation(dy,dfi,omega) : If dy<=-22.26 and dfi<=-7 and omega>5.4.
Dangerous_situation(dy,dfi,omega) : If dy>22.26 and dy<=23.35.
Dangerous_situation(dy,dfi,omega) : If dy>27.69 and dfi>-2.5 and omega<=-4.4 and omeg
Dangerous_situation(dy,dfi,omega) : If dfi<=3.8 and dy<=-34.21 and omega>2.8.
Dangerous_situation(dy,dfi,omega) : If dfi<=-2.4 and dy<=-16.83 and dfi>-3.1.
Dangerous_situation(dy,dfi,omega) : If dfi<=-6.4 and dfi>-7.1 and omega>-15.1.
Dangerous_situation(dy,dfi,omega) : If dfi<=-15 and dy<=-16.83.
Dangerous_situation(dy,dfi,omega) : If omega<=-17.7 and dfi>0.3 and dy>-38.55.
Dangerous_situation(dy,dfi,omega) : If dfi<=-22.2.

 
Fig 3. Rules for the evaluation of a navigational situation for the classification of situations as:  

0 – safe; 1 – dangerous; class II; dy - deviation from the fairway centre line [m],  
dfi − deviation from the recommended course [°],  omega - ship‘s rate of turn [°/Min.]. 

For instance, the first rule of the identification of a dangerous situation (Fig. 3) 
may be interpreted as follows:  

a situation is dangerous – the generated value is “1”-, if the deviation from the 
fairway centre line ∆y to port side is larger than 32.04 [m] and the deviation from 
the recommended course to starboard ∆φ is smaller than 2.1 [°]. 
 The generated rules determine subsets of the domain of the classification 
function, satisfying the constraints for a selected situation class: safe situation  
(Fig. 2); dangerous situation (Fig.3). 

The generated rules enable a readable evaluation of a navigational situation.  
It should be noted, however, that the operation of the algorithm has resulted in the 
generation of rules for individual facts. This may lead to an increased complexity of 
the rule base of the expert system through a creation of a large number of rules for 
individual facts. 

 
C4.5. 

This algorithm is capable of generating decision trees for solving the problem 
of classification into two classes or more. In this connection, apart from the same 
classification as for the FOIL algorithm, another division was introduced with the 
following classes: 

1) class I: facts for the evaluation of a navigational situation in the range <0, 0.4) – 
safe situation, 

2) class II: facts for the evaluation of a navigational situation in the range <0.4, 0.6) 
– intermediate situation, 

3) class III: facts for the evaluation of a navigational situation in the range <0.6, 1> 
– dangerous situation. 
The division of the facts into three classes was done in order to distinguish 

intermediate situations, which are rather difficult to be assigned to any of the 
remaining groups. In this way possible errors in the classification are excluded. 
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The algorithm produces the decision tree from the set of relations (5) for all the 
defined classes kj (K={k1,..., kn}; j=1..n) 

(pi, ∆yi, ∆φi, ωi, kj)  (5) 

Figures 4 and 5 show generated decision trees for the two classifications. 
dy <= -32.04 :
|   dfi <= 2.2 : 1 (35.0/1.4)
|   dfi > 2.2 :
|   |   dy <= -41.81 : 1 (9.0/1.3)
|   |   dy > -41.81 :
|   |   |   dfi <= 3.8 : 1 (4.0/2.2)
|   |   |   dfi > 3.8 : 0 (8.0/1.3)
dy > -32.04 :
|   dy <= 29.86 : 0 (164.0/18.3)
|   dy > 29.86 :
|   |   dfi > -2.4 : 1 (19.0/3.7)
|   |   dfi <= -2.4 :
|   |   |   dy <= 34.21 : 0 (6.0/1.2)
|   |   |   dy > 34.21 :
|   |   |   |   omega <= -7.8 : 0 (4.0/2.2)
|   |   |   |   omega > -7.8 : 1 (6.0/1.2)

 
Fig. 4. A decision tree of a navigational situation evaluation for the two-class division of situations:  

0 – safe; 1 – dangerous; dy - deviation from the fairway centre line [m],  dfi − deviation from 
the recommended course [°],  omega - ship‘s rate of turn [°/Min.]. 

The first rule for identifying a dangreous situation (Fig. 4) may be interpreted 
as follows: a situation is dangerous– the generated value is “1”-, if the deviation 
from the fairway centre line ∆y to port is larger than 32.04 [m] and the deviation 
from the recommended course to starboard ∆φis smaler than 2.2 [°]. 

The generated decision trees determine subsets of the domain of the 
classification function; the subsets satisfy the criterion for the assumed classes of 
a navigational situation: safe situation – dangerous situation (Fig. 4); safe situation – 
intermediate situation – dangerous situation (Fig. 5); 
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dy <= -32.04 :
|   dfi <= 2.2 :
|   |   dy <= -41.81 : 1 (15.0/1.3)
|   |   dy > -41.81 :
|   |   |   dfi > 0.9 : 0.5 (3.0/1.1)
|   |   |   dfi <= 0.9 :
|   |   |   |   dy <= -34.21 : 1 (12.0/2.5)
|   |   |   |   dy > -34.21 :
|   |   |   |   |   omega <= 12.6 : 0.5 (3.0/1.1)
|   |   |   |   |   omega > 12.6 : 1 (2.0/1.0)
|   dfi > 2.2 :
|   |   dy <= -50.5 : 1 (2.0/1.0)
|   |   dy > -50.5 : 0.5 (19.0/1.3)
dy > -32.04 :
|   dy <= 28.78 :
|   |   dy <= 13.57 :
|   |   |   dfi <= -1.3 :
|   |   |   |   dy <= -14.66 : 0.5 (23.0/4.9)
|   |   |   |   dy > -14.66 :
|   |   |   |   |   dfi > -10.9 : 0 (17.0/1.3)
|   |   |   |   |   dfi <= -10.9 :
|   |   |   |   |   |   dy <= 1.63 : 0.5 (7.0/1.3)
|   |   |   |   |   |   dy > 1.63 : 0 (6.0/2.3)
|   |   |   dfi > -1.3 :
|   |   |   |   dy <= 8.14 :
|   |   |   |   |   dy <= -30.95 : 0.5 (3.0/2.1)
|   |   |   |   |   dy > -30.95 : 0 (59.0/3.8)
|   |   |   |   dy > 8.14 :
|   |   |   |   |   omega <= -10 : 0 (3.0/1.1)
|   |   |   |   |   omega > -10 : 0.5 (5.0/2.3)
|   |   dy > 13.57 :
|   |   |   dfi <= 0 : 0 (18.0/8.0)
|   |   |   dfi > 0 : 0.5 (16.0/2.5)
|   dy > 28.78 :
|   |   omega > -5 : 0.5 (11.0/3.6)
|   |   omega <= -5 :
|   |   |   dfi <= -3.1 : 0.5 (10.0/1.3)
|   |   |   dfi > -3.1 :
|   |   |   |   omega > -11.2 : 1 (6.0/2.3)
|   |   |   |   omega <= -11.2 :
|   |   |   |   |   dy <= 37.47 : 0.5 (11.0/2.5)
|   |   |   |   |   dy > 37.47 : 1 (4.0/2.2)

 
Fig. 5. A decision tree of a navigational situation evaluation for the 3-class division of situations:  

0 – safe; 0.5 - intermediate; 1 – dangerous; dy - deviation from the fairway centre line [m],  
dfi − deviation from the recommended course [°],  omega - ship‘s rate of turn [°/Min.]. 

The class of intermediate situations enables finding the trend of situations 
changes. 

The generated logical rules and decision trees implemented in the expert system 
enable automatic evaluation of a navigational situation and its explanation. 
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IMPLEMENTATION 

THE SYSTEM EXPERT SHELL 

One of the tools known as expert system shells is the program NEXPERT 
OBJECT [Program, 1994]. The program has extended tools for introducing and 
edition of rules (knowledge base construction), mechanisms for interference 
backward and forwards a graphic interpreter of inference processing. The 
programming language is object – oriented. 

The basic elements of its system are objects, classes and methods. 
Object – a basic information unit in the system. It may represent any concept of 

the knowledge base. An object may be an element of a larger set (subclass, class), 
and it may be assigned some properties. 

Class – enables grouping objects with the same basic properties. An object may 
belong to several classes. 

Subclass – an element of a class. a group of objects sharing properties of the 
superior class. 

Property – a feature used for describing objects and classes. Properties are 
assigned one of the six pre-defined types. 

Methods – procedures describing operations on objects. 
The relationship between objects is written in the form of rules. The general 

form of the rule is as follows: 

IF LHS THEN hypothesis RHS 
where:  LHS – (Left Hand Size) any number of conjunctions of logical expressions, 

hypothesis – name of a variable assuming only logical values, 
RHS – (Right Hand Size) assumes the form: 

THEN action1 ELSE action2 
Action1 is performed when LHS = True. 
Action2 is performed in the contrary case. 
The program NEXPERT OBJECT made it possible to create an expert system 

prototype in which the generated logical rules and decision tree were implemented. 

For instance, a rule generated by the C4.5 algorithm and implemented in the 
knowledge base of the NEXPERT OBJECT program has the following form: 
RULE: R_10 
LHS: |data|.dy <= 34.21 
|data|.dy > 29.86 
|data|.dy > -32.04 
|data|.dfi <= -2.4 
RHS: ASSIGN 0 |data|.wsp_obl 
HYPO: H_10 
Satisfying the conditions of the rule (LHS) will attribute the value “0” to the 
property wsp_obl of the class data while the hypothesis H_10 will be attributed the 
value “true”. 
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The results of a navigational situation identification 

Both FOIL and C4.5 algorithms were used to verify the identification and 
evaluation of a navigational situation of the expert system with knowledge bases 
created with the use of the two algorithms. 

The algorithms FOIL and C4.5, on the basis of facts (navigational situation 
evaluated by experts) were used to obtain the relationship in a form of simple rules. 
Then, the rules were implemented as a knowledge base of the expert system by 
means of the expert shell system, the program NEXPERT OBJECT. The acquired 
knowledge base was used for a verification of navigational situation evaluation for 
the source data. 
FOIL 

The situations were considered as classified correctly when they were assigned 
only to one of the classes and the classification itself was correct. 

In the set of learning data consisting of 255 facts no wrongly classified 
situations were found. 

In the set of testing data (table 1) consisting of 45 facts, it turned out that two 
situations were not classified to any of the two classes. Respectively, six and three 
situations were classified incorrectly as safe or dangerous ones with two situations 
classified at the same time to both classes. They were, therefore, analyzed in detail. 

Table 1. Identification and evaluation of a navigational situation in the expert system based 
on the rules base – FOIL algorithm – testing data 

No of 
situations 

Situations classified incorrectly Unclassified situations 

45 9 2 
 
 Among the situations incorrectly assigned to the class i three were valued by 
navigators as follows: 0.56, 0.54 and 0.52, thus the values were quite close to the 
boundary between the two classes. 

Two of these situations concerned extreme events where the recorded values of 
deviations from the fairway centre line were maximum and had not been entered in 
the learning data. 

In one case (value: 0.66) the navigators presumably took account of additional 
factors, because the parameters essential for the evaluation do not indicate the 
situation was dangerous. 

Three of the situations wrongly assigned to the class II obtained the following 
values: 0.44, 0.48 and 0.32. 

Two situations were not identified at all, which is a consequence of the way the 
algorithm works, namely the areas of the learning data are covered exactly while 
other areas may be completely omitted. That is why the learning data-set should 
cover all the situations that may be observed. 
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C4.5 
The results of the verification for the 2-class and 3-class division are given in 

tables 2 and 3. Due to the procedure of decision tree pruning the results account for 
learning and testing data. 
Table 2. Identification and evaluation of a navigational situation in the expert system based 

on the decision tree – C4.5 algorithm – 2-class division. 

Data No of situations Incorrectly classified situations 
Learning 255 19 
Testing 45 8 
Total 300 27 

 
Out of 24 situations incorrectly assigned to class i (17 for the learning data and 

7 for the testing data) 19 situations (16 for the learning data and 3 for the testing 
data) were assigned by the navigators to the <0.5, 0.6> range – close to the boundary 
between the two classes. In the remaining cases the values were 0.70 (learning data) 
and 0.66, 0.74, 0.82, 0.66 (testing data). 

Altogether three situations were erroneously assigned to the class II (respective 
values were: 0.42, 0.44 and 0.48): two for the learning data and one for the testing 
data. In all cases the values were close to the class boundary. 

Table 3 presents the results of dividing the situations into three classes. 
Table 3. Identification and evaluation of a navigational situation in the expert system based 

on a decision tree –C4.5 algorithm – for the 3-class division 
Data No of situations Incorrectly classified situations 

Learning 255 21 
Testing 45 13 
Total 300 34 

 
Of all the incorrectly classified situations one (testing data) was classified as 

safe, although the navigators found it dangerous – the error that occurred in two 
classes – (navigators’ value - 0.66). That situation was discussed above in the 
section concerning the FOIL algorithm (possibly additional factors were accounted 
for). In the remaining cases the errors consisted in classifying situations as 
belonging to the neighbouring class. 

The summarized table below presents all the classification results for 2-class 
(FOIL, C4.5) and 3-class divisions (C4.5). The verification of the evaluations was 
performed through a comparison of classification results obtained from the various 
systems (comparative algorithm). The results are shown in the table 4. 
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Table 4. The overall results of navigational situation classifications 

Data Number of 
Situations 

Situations 
classified 

correctly by all 
the classification 

systems  

Situations classified 
incorrectly by one or 
more classification 

systems 

Situations classified 
incorrectly after the 

comparative 
algorithm was 

applied 
Learning 255 217 38 2 
Testing 45 25 20 7 
Total 300 232 58 9 

 
In the case of two incorrectly classified situations from the learning data the 

values of navigators’ assessments were close to the boundary between the two 
classes and amounted to 0.42 and 0.44. 

Out of seven incorrectly classified situations taken from the testing data five 
evaluations by navigators were close to the boundary between the two classes; their 
respective values were 0.44, 0,54, 0.48 0.52 and 0.52. The other two wrongly 
classified situations were as follows: 
1) situation valued at 0.66 by navigators; presumably the navigators took additional 

factors into account, 
2) situation valued at 0.82 by navigators; a case of maximum recorded deviation 

from the fairway centre line which was not included in the learning data set. 

The parallel application of the presented systems for evaluating a navigational 
situation and the verification of the classification based on a comparative algorithm 
allows to substantially reduce the number of errors and to increase the reliability of 
the expert system. 

DISCUSSION 
The acquisition of expert knowledge, i.e. extraction and transformation into 

a form of a knowledge base of an expert system has led to the creation of a tool 
aiding the evaluation of navigational situations. 

The results obtained indicate a high degree of convergence of values generated 
by the expert system and actual classifications performed by navigators  
(Tab. 1, 2, 3). 

Cases of incorrect classification have resulted from a limited number of facts – 
thus there is no possibility to account for all potential situations; another reason is an 
arbitrary division into classes, which in the case of even slight changes in criteria 
applied by the navigators may lead to wrong classifications of situations assessed as 
close to the safe / dangerous boundary. 

A parallel application of knowledge bases, whose creation was based on 
analyzed algorithms, and introduction of the verification stage by comparing 
individual values (Tab.4) allow to enhance the reliability of the expert system used 
for the evaluation of navigational situations. 
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CONCLUSIONS 
The article presents a methodology of acquisition and representation of expert 

navigators’ knowledge for the identification and evaluation of a navigational 
situation in restricted area traffic. Chosen tools of knowledge acquisition are 
described. Tools are used for designing a knowledge base to suit the needs of vessel 
traffic service (VTS) centres. a prototype expert system for the identification and 
evaluation of a navigational situation in restricted area traffic is presented. The 
method has a capacity of updating the knowledge base of the system through 
supplementing the set of facts and automatic generation of logical rules or decision 
trees. It seems purposeful to enrich the presented expert system with tools for 
quantitative assessment of navigational safety, which would be based on artificial 
neural networks with fuzzy logic (non-symbolic representation of knowledge), as 
well as with a graphic display in the form of ship’s fuzzy domain. These features 
may constitute a considerable assistance in evaluating a navigational situation by 
VTMS operators. 

The research is in progress on methods of including other vital factors affecting 
the safety of navigation, such as ship’s and area parameters, sea and meteorological 
conditions, acquisition of navigators’ relevant knowledge and the implementation of 
the knowledge in an appropriate expert system. 
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