PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Characterization of an aperture-stacked patch antenna for ultra-wideband wearable radio systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents, for the first time, the time-domain characteristics of an aperture-stacked patch antenna (ASPA) for ultra-wideband (UWB) wearable devices. The methodology of antennas characterization for UWB radio systems is also outlined. The antenna operates within the 3-6 GHz frequency band. Time- and frequency-domain characteristics of this antenna are presented in transmission mode (Tx), receiving mode (Rx) and for 2-antenna (Tx-Rx) system. The pulse driving the antenna has duration of 0.65 ns. In the Tx mode, pulses radiated in different directions of the H-plane have very similar shapes. Fidelity factors are as high as 91.6-99.9%. For 2-antenna system, pulses received in normal and end-fire-like directions have the fidelity of 69.5%. As it was found, antenna does not behave "reciprocal" comparing Tx and Rx modes. For normal propagation direction, radiated pulse is the 2nd derivative of the input waveform, but in the Rx mode, received pulse is the 1st derivative of the incident plane wave. This antenna can be used for transmission of short-pulses, even 0.65-1 ns in duration. It is also small (patch planar dimensions 32/19 mm) and compact. Microstrip configuration allows further integration of active devices on the same board. Taking into account above results we can say that ASPA is a good candidate for UWB non-invasive wireless body area network (WBAN) applications.
Rocznik
Tom
Strony
39--44
Opis fizyczny
Bibliogr. 11 poz., il.
Twórcy
autor
  • Electronics Laboratory, ETH Zurych, Gloriastrasse 35, CH-8092 Zurich, Switzerland
autor
  • Electronics Laboratory ETH Zurich Gloriastrasse 35 CH-8092 Zurich, Switzerland
Bibliografia
  • [1] T. Zasowski, F. Althaus, M. Stäger, A. Wittneben, and G. Tröster, “UWB for noninvasive wireless body area networks: channel measurements and results”, in IEEE Conf. Ultra-Wideband Syst. Technol., Reston, USA, 2003.
  • [2] Federal Communication Commission, “First Order and Report, revision of Part 15 of the Commissions Rules Regarding UWB Transmission Systems”, FCC 02-48, Apr. 2002.
  • [3] M. Z. Win and R. A. Scholtz, “Impulse radio: how it works”, IEEE Commun. Lett., vol. 2, issue 2, pp. 36–38, 1998.
  • [4] W. Soergel, Ch. Waldschmidt, and W. Wiesbeck, “Antenna characterisation for ultra wideband communications”, in 2003 Int. Works. Ultra Wideband Syst. IWUWBS, Oulu, Finland, 2003.
  • [5] E. K. Miller and J. A. Landt, “Short-pulse characteristics of the conical spiral antenna”, IEEE Trans. Anten. Propagat., vol. 25, no. 5, 1977.
  • [6] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Design of wide-band aperture-stacked patch microstrip antennas”, IEEE Trans. Anten. Propagat., vol. 46, no. 9, 1998.
  • [7] Ch. Robin, S. Bories, and A. Sibille, “Characterisation tools of an tennas in the time domain”, in 2003 Int. Works. Ultra Wideband Syst. IWUWBS, Oulu, Finland, 2003.
  • [8] A. Shlivinski, E. Heyman, and R. Kastner, “Antenna characterisation in the time domain”, IEEE Trans. Anten. Propagat., vol. 45, no. 7, 1997.
  • [9] B. Parr, B. Cho, K. Wallace, and Z. Ding, “A novel ultra-wideband pulse design algorithm”, IEEE Commun. Lett., vol. 7, no. 5, 2003.
  • [10] R. W. Ziolkowski, “Properties of electromagnetic beams generated by ultra-wide bandwidth pulse-driven arrays”, IEEE Trans. Anten. Propagat., vol. 40, no. 8, 1992.
  • [11] C. E. Baum, “General properties of antennas”, IEEE Trans. Electromag. Compat., vol. 44, no. 1, 2002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0024-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.