PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low frequency noise in advanced Si bulk and SOI MOSFETs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A review of recent results concerning the low frequency noise in modern CMOS devices is given. The approaches such as the carrier number and the Hooge mobility fluctuations used for the analysis of the noise sources are presented and illustrated through experimental data obtained on advanced CMOS SOI and Si bulk generations. Furthermore, the impact on the electrical noise of the shrinking of CMOS devices in the deep submicron range is also shown. The main physical characteristics of random telegraph signals (RTS) observed in small area MOS transistors are reviewed. Experimental results obtained on 0.35-0.12 žm CMOS technologies are used to predict the trends for the noise in future CMOS technologies, e.g., 0.1 žm and beyond. For SOI MOSFETS, the main types of layout will be considered, that is floating body, DTMOS, and body-contact. Particular attention will be paid to the floating body effect that induces a kink-related excess noise, which superimposes a Lorentzian spectrum on the flicker noise.
Słowa kluczowe
Rocznik
Tom
Strony
24--33
Opis fizyczny
Bibliogr. 38 poz., il.
Twórcy
autor
  • IMEP-ENSERG (CNRS-INPG-UJF), 23 rue des Martyrs, BP. 257, 38016 Grenoble cedex 1, France
autor
  • IMEP-ENSERG (CNRS-INPG-UJF), 23 rue des Martyrs, BP. 257, 38016 Grenoble cedex 1, France
autor
  • IMEP-ENSERG (CNRS-INPG-UJF), 23 rue des Martyrs, BP. 257, 38016 Grenoble cedex 1, France
Bibliografia
  • [1] S. Machlup, „Noise in semiconductors: spectrum of two parameters random signals", J. Appl. Phys, vol. 25, p. 341, 1954.
  • [2] A. McWhorter, „Semiconductor Surf. Phys.", University of Pennsylvania Press, Philadelphia, 1957.
  • [3] S. Christensson and I. Lundstroem, „Low frequency noise in MOS transistors I", Solid State Electron., vol. 11, p. 797, 1968.
  • [4] F. Hooge, „1/ f noise", Physica, vol. 83B, p. 14, 1976.
  • [5] A. van der Ziel, „Flicker noise in electronic devices", Adv. Electron. & Electron Phys., vol. 49, p. 225, 1979.
  • [6] R. Jindal and A. van der Ziel, „Phonon fluctuation model for flicker noise in elemental semiconductors", J. Appl. Phys., vol. 52, p. 2884, 1981.
  • [7] P. Dutta and P. Horn, „Low frequency fluctuations in solids: 1/ f noise", Rev. Mod. Phys., vol. 53, p. 497, 1981.
  • [8] K. Ralls, W. Skocpol, L. Jackel, R. Howard, L. Fetter, R. Epworth, and D. Tennant „Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low frequency (1/ f ) noise", Phys. Rev. Lett., vol. 52, p. 28, 1983.
  • [9] M. Uren, D. Day, and M. Kirton, „Random telegraph noise in silicon metal-oxide-semiconductor field effect transistors", Appl. Phys. Lett., vol. 47, p. 1195, 1984.
  • [10] P. Restle, „Individual oxide traps as probes into submicron devices", Appl. Phys. Lett., vol. 53, p. 1862, 1988.
  • [11] C. Surya and T. Hsiang, „A thermal activation model for 1/ f noise in Si-MOSFETs", Solid State Electron., vol. 31, p. 959, 1988.
  • [12] M. Kirton and M. Uren, „Noise in solid-state microstructures: a new perspective on individual defects, interface states and low frequency 1/ f noise", Adv. Phys., vol. 38, p. 367, 1989.
  • [13] R. Jayaraman and C. Sodini, „A 1/ f noise technique to extract the oxide trap density near the conduction band edge of silicon", IEEE TED, vol. 36, p. 1773, 1989.
  • [14] K. Kandiah, M. Deighton, and F. Whiting, „A physical model for random telegraph signal currents in semiconductors devices", J. Appl. Phys., vol. 66, p. 937, 1989.
  • [15] H. Nakamura, N. Yasuda, K. Taniguchi, and A. Toriumi, „Existence of double-charged oxide traps in submicron MOSFET's", Jap. J. Appl. Phys., vol. 28, p. L2057, 1989.
  • [16] K. Hung, P. Ko, C. Hu, and Y. Cheng, „A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors", IEEE Trans. Electron Dev., vol. 37, p. 654, 1990.
  • [17] I. M. Hafez, G. Ghibaudo, and F. Balestra, „A study of flicker noise in MOS transistors operated at room and liquid helium temperature", Solid State Electron., vol. 33, p. 1525, 1990.
  • [18] A. Ohata, A. Toriumi, M. Iwase, and K. Natori, „Observation of random telegraph signals: anomalous nature of defects at the Si/SiO2 interface", J. Appl. Phys., vol. 68, p. 200, 1990.
  • [19] R. Jayaraman and C. Sodini, „1/ f noise interpretation of the effect of gate oxide nitridation and reoxidation in dielectric traps", IEEE TED, vol. 37, p. 305, 1990.
  • [20] D. H. Cobden, M. Uren, and M. Kirton, „Entropy measurements on slow Si/SiO2 interface states", Appl. Phys. Lett., vol. 56, p. 1245, 1990.
  • [21] M. Schultz and A. Karmann, „Individual, attractive defect centers in the SiO2-Si interface of mm-sized MOSFETs", Appl. Phys. A, vol. 52, p. 104, 1991.
  • [22] G. Ghibaudo, O. Roux, C. Nguyen-Duc, F. Balestra, and J. Brini, „Improved analysis of low frequency noise in field-effect MOS transistors", Phys. Stat. Sol. A, vol. 124, p. 571, 1991.
  • [23] G. Ghibaudo, O. Roux, and J. Brini, „Modeling of conductance fluctuations in small area metal oxide semiconductor transistors", Phys. Stat. Sol. A, vol. 127, p. 281, 1991.
  • [24] E. Simoen, B. Dierickx, C. Claeys, and G. Declerck, „Explaining the amplitude of RTS noise in submicrometer MOSFETs", IEEE Trans. Electron Dev., vol. 39, p. 422, 1992.
  • [25] O. Roux dit Buisson, G. Ghibaudo, and J. Brini, „Model for drain current RTS amplitude in small-area MOS transistors", Solid State Electron., vol. 35, p. 1273, 1992.
  • [26] X. Li and L. Vandamme, „1/ f noise in series resistance of LDD MOSTs", Solid State Electron., vol. 35, p. 1471, 1992.
  • [27] E. Simoen, B. Dierickx, and C. Claeys, „Hot-carrier degradation of the random telegraph signal amplitude in submicrometer Si MOSTs", Appl. Phys. A, vol. 57, p. 283, 1993.
  • [28] M. H. Tsai and T. P. Ma, „1/ f noise in hot-carrier damaged MOSFET's: effect of oxide charge and interface traps", IEEE Electron Dev. Lett., vol. 14, p. 256, 1993.
  • [29] O. Roux dit Buisson, „Etude de bruit en 1/ f et des fluctuations RTS aux basses fréquences dans le transistor MOS submicronique". Ph.D. thesis, INP Grenoble, 1993 (in French).
  • [30] M. H. Tsai and T. P. Ma, „The impact of device scaling on the current fluctuations in MOSFET's", IEEE Trans. Electron Dev., vol. 41, p. 2061, 1994.
  • [31] C. Jakobson, I. Bloom, and Y. Nemirovsky, „1/ f noise in CMOS transistors for analog applications from subthreshold to saturation", Solid State Electron., vol. 42, p. 1807, 1998.
  • [32] E. Simoen and C. Claeys, „On the flicker noise in submicron silicon MOSFET", Solid State Electron., vol. 43, p. 865, 1999.
  • [33] Y. Nemirovsky, I. Brouk, and C. G. Jakobson, „1/ f noise in CMOS transistors for analog applications", IEEE Trans. Electron Dev., vol. 48, p. 921, 2001.
  • [34] A. K. Agarwal, M. C. Driver, M. H. Hanes, H. M. Hodgood, P. G. McMullin, H. C. Nathanson, T. W. O'Kee_e, T. J. Smith, J. R. Szedon, and R. N. Thomas, „MICROXTM|an advanced silicon technology for microwave circuits up to X-band", IEDM Tech. Dig., pp. 687-690, 1991.
  • [35] D. Eggert, P. Huebler, A. Huerrich, H. Kuerck, W. Budde, and M. Vorwerk, „A SOI RF-CMOS technology on high resistivity SIMOX substrates for microwave applications to 5 GHz", IEEE Trans. Electron Dev., vol. 44, no. 11, pp. 1981-1989, 1997.
  • [36] O. Rozeau, J. Jomaah, S. Haendler, J. Boussey, and F. Balestra, „SOI technologies overview for low-power low-voltage radio-frequency applications", in Analog Integrated Circuits and Signal Processing. Kluwer, 2000, vol. 25.
  • [37] E. Simeon, U. Magnusson, A. L. P. Rotondaro, and C. Claeys, „The kink-related excess low frequency noise in silicon-on-insulator MOST's", IEEE Trans. Electron Dev., vol. 41, pp. 330-339, 1994.
  • [38] Y.-C. Tseng, W. M. Huang, P. J. Welch, J. M. Ford, and J. C. S. Woo, „Empirical correlation between AC kink and low frequency noise overshoot in SOI MOSFETs", IEEE EDL, vol. 19, no. 5, pp. 157-159, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0022-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.