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Abstract

The paper deals with a 2D mathematical model, which describes the groundwater
temperature. Such a model is an interesting alternative for 3D equations, which re-
quire much more additional information (i.e. shape and characteristics of the area,
initial and boundary conditions) than 2D equations. In the first part of the paper
the equations of energy conservation for two main versions of a 2D model (i.e. for
a confined and for an unconfined area) were derived. Special attention was paid
to two kinds of heat-transfer processes, viz. micro-dispersion, caused by pore-space
averaging of the temperature and velocity, and macro-dispersion, due to averaging
along the water-layer depth. The analysis of the thermal conditions in the region
of the Kozienice electric-power-plant was presented, as an example of the model
application.

Notation

The following symbols are used in this paper:

a — auxiliary function,

Ap, A - auxiliary function,

b - auxiliary function,

c — concentration of dissolved matter,

c? — deviation of concentration,

cr - specific heat of a fluid,

C,,C; - integration constants,

dp — mean diameter of ground particles,

Dy - coefficient of molecular diffusion (scalar),

Dy — coefficient of thermal molecular diffusivity (scalar),
ery, ey — cffective unit heat energy fluxes, through the bottom (b) and

free-surface (f),
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coefficient of effective heat dispersion (tensor for anisotropic
case),

coefficient of effective heat dispersion (scalar for isotropic
case),

optional function,

auxiliary function,

gravity acceleration,

thermal diffusivity of ground,

coefficient of heat exchange between water and porous me-
dium,

water layer depth,

bottom slope and free-surface slope,

number of functions s;,;,

number of functions sy;,

hydraulic conductivity (tensor for anisotropic case),
hydraulic conductivity (scalar for isotropic case),

coefficient of dissolved matter macro-dispersion (scalar for
isotropic case),

coefficient of total heat dispersion in porous medium (tensor
for anisotropic case),

coefficient of total heat dispersion in porous medium (scalar
for isotropic case),

coefficient of dissolved matter micro-dispersion (tensor for
anisotropic case),

coefficient of dissolved matter micro-dispersion (scalar for iso-
tropic case),

coefficient of heat micro-dispersion (tensor for anisotropic
case),

coefficient of heat micro-dispersion (scalar for isotropic case),
effective porosity,

unit vector, normal to the considered surface,

pressure,

reference pressure (e.g. po = Parm = atmospheric pressure),
pressure function,

Peclet number,

Darcy flux (specific discharge),

macro-dispersive unit flux of thermal energy,
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qQE - total unit flux of thermal energy,

qQH — micro-dispersive unit flux of thermal energy,

qm — molecular unit flux of thermal energy,

qr - effective unit flux of thermal energy,

Q — discharge of water,

r — radius,

Re - Reynolds number,

Smi — mass source function,

STi - thermal energy source function,

Ss — storage coefficient (storativity for confined aquifers, specific
yield for unconfined aquifers),

t — time,

T - pore-space averaged temperature,

1= - deviation of the real temperature (T* = T, — T),

T° — deviation of the depth-averaged temperature (7° = T — 6),

T - real temperature of the groundwater,

T - temperature of the porous medium,

u - real temperature of the groundwater,

u* — deviation of the real velocity (u*=u —up),

u, - pore velocity (“heat-front-velocity™),

v - depth-averaged velocity of the groundwater,

ve — deviation of the pore velocity (v*=u, —v),

w — effective influent of water to the aquifer,

x,y — horizontal Cartesian co-ordinates,

z — vertical Cartesian co-ordinates,

Zp - aquifer floor ordinate,

zf — aquifer roof ordinate (for confined flows) or free-surface or-
dinate (for unconfined flows),

Bc<.B, - angles between the axes Ox, Oy and free-surface element
AS,

8 — Kronecker delta,

AEry - clementary flux of heat energy through the element AS;,

AS — projection of AS, on the x Oy-plane,

AS, — - element of the free-surface,

6 — depth-averaged groundwater temperature,

s — depth-averaged porous medium temperature,
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A — groundwater thermal conductivity,

Ag - porous medium thermal conductivity,
v — kinematic viscosity of water,

P - fluid density,

Oo — fluid density for p = po,

® — filtration potential.

attention: the bar denotes depth-averaged value.

1. Introduction

The heat energy does not belong to those factors, which are always very harmful
for the quality of groundwater, like heavy metals compounds, organic pollutants
or micro-organisms. However, in ecological practice one has very often to solve
problems connected with the description of the groundwater temperature. Such
problems appear during investigations of hydrogeological conditions in the neigh-
bourhood of electric-power-plants, heat-generating plants, energetic pipelines or
when frost penetration into the ground is considered.

In general, the field of the groundwater temperature changes in space and
time, so must be described by means of 3D-equations. However, spatial models
are time-consuming and expensive, as in order to exploit such a tool one has to
formulate 3D initial conditions and 3D data for the model verification. To deliver
such information, very precise control bore—holes must be performed and sets of
multiple piezometers (i.e. with filters at different depths) must be installed in the
region considered.

For many problems simplified 2D horizontal models of heat exchange are
sufficient. Such models can be applied only in those cases where the flow is exactly
two-dimensional, or when vertical flow components can be neglected. However,
these restrictions are not very serious in many cases, so a 2D model is an important
tool for tackling hydrogeological problems.

2. Equations for 3D Cases

The groundwater velocity field, in the saturation zone, can generally be described
by the filtration potential (piezometric head), which is expressed as a solution of
the Richards equation (Verruijt 1970, Zaradny 1990):

¢ ) Im
passﬁ = div (ngradfp) + ;.S‘m,' (1)

where for incompressible fluids:

¢ =z+p/pg 2)
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and for compressible fluids:

P
¢=Z+P/g=z+fdp/(pg) 3)
Po

where ¢ - filtration potential, p - fluid density, Ss — storage coefficient, ¢ — time,
K - tensor of hydraulic conductivity, z — vertical ordinate, p — pressure, pg — ref-
erence pressure, pg = p for p = p,, g — gravity acceleration, s,,; — source function,
I, — number of source functions, P — pressure function. The velocity field can be
determined by means of the Darcy law:

q=-Kgrad ¢ 4)

(q — Darcy flux). For isotropic aquifers the hydraulic conductivity is a scalar value
(K).

The temperature of groundwater is described by the energy conservation equa-
tion. In a general case, taking into account different physical properties of a fluid
and a porous medium, we have to write a separate equation for the heat transfer
in the fluid (Dagan 1972):

T .
1 +div (1, T) = div (Brgrad T) + he (Ts — ) + 3 s 5)

i=1
and separately for the porous medium:

3 T
at

where: T - fluid temperature, averaged in pore-space, Ts — porous medium tem-
perature, u, — pore velocity, Er - tensor of effective heat dispersivity, . - coef-
ficient of heat exchange between fluid and porous medium, s7; — temperature
source function, I7 — number of temperature source functions, Gy — heat diffus-
ivity of the porous medium. For the slow flows, when the Reynolds number (Re)
meets the condition:

= GrATs+h. (T - Ty) (6)

Re =upd, [v <1 (7)

(dp — mean diameter of ground particles, v — the fluid kinematic viscosity), the
difference between the processes of heat transfer — in the fluid and through the
porous medium - becomes negligible. In such cases we can assume, that T = T
(Dagan 1972).

The groundwater (or another fluid) can flow through the porous medium
in confined areas (artesian filtration) or in unconfined areas. In the first case
the shape of the aquifer is defined by its geological characteristic. With a more
complex situation we have to do considering unconfined flows, when the upper
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part of the domain is defined by the free-surface of groundwater. The shape of
this surface is described by the following kinematic condition (Jin and Kranenburg
1993):
0z dz dz
B_;f‘f‘”pr(Z:Zf)a—;‘*‘”py(z:zf)a—;= ‘
where: w — function, which describes changes of the groundwater free-surface,
due to the inflow or outflow of water; this function expresses the thickness of the
water layer (present in the porous medium), related to the unit of time, which
flows in (w > 0) or out (w < 0) from the aquifer.
In a general case, the shape of the aquifer floor can also vary in space and
time. Its ordinate is described by the kinematic condition on the aquifer bottom:

Upz (z2=127) +w (8)

dz dz dz
'a_tb+upx(z‘:zb)a_;+upy(Z=Zb)a_;“=upz(2=zb)- (9)

3. Equations for 2D Unconfined Flows

If the vertical components of the pore velocity vector up do not exert any im-
portant influence on the course of considered phenomena, we can make use of a
simplified model of the flow. In this model the flow variables are averaged with
respect to the vertical ordinate.

The free-surface level in such a case is described by the classic Boussinesq
equation (Verruijt 1970, Zaradny 1990), which has the following form for uncon-

fined flow: 3
fie—L = div (K Hgradzf) + w - fi. (10)

n
‘ot

For the confined flow this equation has the shape:

SSH";—‘:’ = div (K Hgrad ) (11)

where the bar denotes depth-averaged values.

After determination of z; (or ¢ respectively) we can calculate the depth-
averaged Darcy flux q (or depth—averaged pore velocity v), making use of the
averaged Darcy law (Eq. 4):

q = n.v = —Kgradzs (unconfined flow), (12)
q=n.v=—Kgradp (confined flow). (13)

In order to describe the mean temperature distribution we have to average
the equation of energy conservation (Eq. 5). Real temperature 7 in the model
considered must be presented as teh sum of the depth-averaged temperature 6
and the temperature deviation 77:

Tx,y,z,t) =08(x,y, )+ T°(x,y,z,1). (14)
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Integrating both sides of Eq. 5 with respect to the vertical variable, substituting
the kinematic conditions (Eqs. 8, 9) and also substituting the Boussinesq equation,
we obtain:

Do 1 1 —— 1
— = ——|div|{ —qrH + Hv°T° —
e = | (5 9r# + 57T )|+ g rrtem) +
: I (15)
+h (6; —0)+ Y STi.
i=1
Carrying out the analogic transformations for Eq. 6, we can write:
389: = GrAb, + e (6 —65). (16)

Relations (15, 16), together with the Boussinesq equation (Eq. 10) and Darcy
law (Eq. 12) establish the system of mathematical equations, closed with respect
to unknowns 6, 6, z; and q, which describe the 2D heat transfer in an unconfined
aquifer.

4. Equations for 2D Confined Flows

The scheme of a confined aquifer is shown in Fig. 1b. The equation of energy
conservation for such a case can be obtained in almost the same way as for an
unconfined aquifer. A slight difference appears when we want to pose the prob-
lem. In the case of an unconfined aquifer, the functions H(x,y,t) and v(x,y,t)
can be calculated after determination of z;(x, y,¢) from the Boussinesq equation
(10), whereas for the confined aquifer the function H(x,y,t) is known from the
very beginning, as it belongs to the geological characteristics of the situation con-
sidered. The mean velocity v is defined by Eq. 13, when we know the solution of
Eq. 11.

5. Micro- and Macro-dispersion of Heat Energy

Appearing in the Eq. 15 symbol q7 denotes the depth-averaged relative unit flux
of heat energy, encompassing global effects of the molecular heat conduction and
so-called hydrodynamic dispersion (Rumer 1972):

qr=qu +quy = —pCf[DT- grad T + T"u"], (17)
F=15-T v¥=u-u, (18)

where: Dy — thermal diffusivity of a fluid, 7; - real temperature of groundwater,
u — real velocity of groundwater.

According to the commonly applied practice (Rumer 1972), the term describ-
ing hydrodynamic dispersion is expressed by the generalised Fourier law. Adding



92 J. M. Sawicki

z 3
piezometer @
K L)

LA | ."-'-‘:."I '.Vx(xoymto)
P ... % 3 .
H 03 -l_, '-h-':'
B RN W e ;
2 1ER RO - | s - L <
al ! P Iy R . N
- RPN | E-AHRIDNE-1 o | BRI R 3
] 5 P S ey PR g I e >
4 " | - = m ‘ . < A
AR AR LRI RS S =— ¥
N Rt A SN s R FEl :
(-9 il ‘ : e g =2

(I . - lf - -
/ (PL)

Yo
impermeable layer (IL) -

Fig. 1. Co-ordinate system and calculation schemes for confined (a) and unconfined (b) flows
(PWL = piezometric water level)

influences of both unit processes (i.e. molecular conduction and hydrodynamic
dispersion) we can define the effective unit flux of heat energy as:

qr = —pcs[Dr grad T + K7 grad T] = — (D1 + Kr) pcr grad T =

= —pcsEr gradT. L

The coefficient D7 is a material constant. For the process of unsteady heat
conduction in the groundwater it is assumed, that (Dagan 1972):

Dy = 2)\/(3,061') , Dr=Dr-8 (20)

(A — thermal conductivity for pure water, ¢s - specific heat of water). For the
steady state we have:

Dr = [ne)\ el =) Ag]/[pcfne + PgCe (L~ ne)] (21)

where ¢, - specific heat of the ground.
The coefficient K7 in turn depends on the flow character. For the Peclet
numbers:
vdp
Pe = < 10000 (22)
. DT
its value is equal to the coefficient of mass dispersion K. For the isotropic ground
one can assume (Dagan 1972):

Kr=14vd,, Kr=Kr-. (23)
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For the anisotropic media one has to determine two values, viz. longitudinal
and transversal components of heat dispersion, e.g. making use of the theory of
dissolved matter dispersion (Fischer 1979, Rutherford 1994), and subsequently
transforming these components into the optional co-ordinate system (Sawicki
1994). When the Peclet number Pe < 3000, one can neglect heat dispersion in
comparison with the heat conduction, assuming in this case that K = 0 (Dagan
1972).

Let us note, that in Eq. 15 the depth-averaged value of the vector q7 appears,
and alongside this vector there is an expression qp, where:

qp = —T°v. (24)

This function is analogical with the vector qg. The difference lies in the character
of components of these expressions - qg is defined by deviations of velocity and
temperature in the pore space (u¥ and 7%), whereas qp is a depth-averaged
product of “macro-deviations” (v° and 7°), determined along the vertical ordinate
“z”. Taking into account this difference, it is very profitable to distinguish two kinds
of dispersive unit fluxes of heat energy, namely a micro-dispersive unit heat flux
(9#) and a macro-dispersive unit heat flux (qp).

Methods of the vector qp description have not been developed so far. An
analogical vector, describing the macro-dispersion of dissolved matter, was invest-
igated by Sawicki (1995). An analysis of the process pointed to the conclusion,
that the unit flux of mass, due to the macro-dispersion, can be expressed by the
following generalisation of Fick’s law:

v = —Kp gradé = 6.85 (ip —if)’ Ky gradé (25)

(Kp — coefficient of dissolved matter macro-dispersion, i, = | grad z,| — aquifer
roof slope, iy = | grad zy | - aquifer floor slope, ¢ — depth-averaged concentration).

As long as the problem of heat energy macro-dispersion is completely solved,
one can make use of a provisional definition of the coefficient K (Sawicki 1995):

Kg = Dr + 1.4vd, [1 +6.85(i — if)z] (26)
for the total unit mass flux (Kg = Kg-é, for the isotropic case):

9E =4m +9qn +qp = —Kg grad 6. (27)

When iy, = iy, the vertical velocity profile is uniform, macro-dispersion does not
occur and we have to do only with a combination of diffusion and micro-dispersion
(K = Dr + Kr).
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COOLING TOWERS

EDIFICE OF 500 MW
POWER UNITS

p

S~~~ KOZIENICE — === LINES OF CONSTANT
TEMPERATURE

Fig. 2. Position of the power-plant edifices and measured groundwater temperature

6. Example of the Model Application
6.1. Characteristics of the Situation

The active power unit 500 MW of the Kozienice-power-plant (Fig. 2) is un-
der special control, because of the low load capacity of the subsoil. Monitoring
of hydrogeological parameters in observation wells in this unit neighbourhood

i okt s R e A i o e e it o
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(piezometers P11, P20, P23, P24, P25), led to the conclusion that the groundwa-
ter temperature near the power boiler is apparently heightened. The system of
constant-temperature lines, shown in Fig. 2, was drawn on the base of measure-
ments carried out in 1993-1996 by the technical services of the power-plant. The
set of data was delivered together with the remaining initial pieces of information.
For this reason it was not possible to discuss these data nor to change them, as
the ordered scope of investigations did not include any measurements.

Explanation of the temperature rise reasons was very important for the power-
plant managers. Especially important was indication of the main cause of the
observed situation — was the temperature growth caused by the heat conduction
only, or mainly by the possible outflow of hot water from leaks in the power-unit
installations?

As can be seen in Fig. 2, the set of constant-temperature lines around the
power-unit is regular, almost symmetric. The centre of symmetry (point P in Fig.
2) is situated under the active power-unit. This symmetry cnables us to exclude
a single-directional outflow of the heated groundwater from possible reasons of
temperature growth, as in the other case we would observe “a tongue” of hot
water, oriented towards the outflow. This conclusion is confirmed by the ground-
water table ordinates observed in piezometers and delivered by the power-plant
technical service. These ordinates are almost constant and equal to 100.9 m a.s.l
(Fig. 3), as under the power-plant edifices there is the flat part of the groundwater
table, depressed by dewatering systems (drains and wells).

However, the axisymmetric shape of the system of constant-temperature lines
does not exclude a possible leak of hot water; flowing uniformly in all horizontal
directions. Such a leak would not exert any important influence on the free-surface
shape, but would influence the temperature field. Trying of this question is the
main purpose of the work presented in this example.

The problem was solved in two ways, according to the main question, posed by
the orderer (i.e. the Kozienice power-plant authorities). In the first attitude it was
assumed, that the leak did not exist (v = 0) and then the measured temperature
distribution was compared with the distribution obtained as a solution of the
equation of pure heat conduction (problem TT).

In the second step it was assumed that the leak in point P (see Fig. 2) existed
and the system of measured constant-temperature lines was compared with that
obtained from the equation of heat advection—conduction (problem TII).

6.2. The TI Problem — Pure Heat Conduction

The calculation scheme for the problem of heat transfer by pure conduction is
shown in Fig. 3a. The ground parameters in the neighbourhood of the power-plant
are very uniform (alluvial sand), hence it was assumed, that the aquifer under
the power-unit is isotropic (hydraulic conductivity K = 0.00028 m/s, effective
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porosity n, = 0.35, water thermal conductivity A = 0.534 J/msr°C, air thermal
conductivity A, = 0.0308 J/msr°C, ground thermal conductivity A, = 1.000 J/mst°C,
water specific heat ¢; = 4181 J/kgr°C, ground specific heat ¢, = 830 J/kg°C).
Effective thermal conductivity of the saturation zone (0.8369 J/ms°C) and of the
acration zone (0.6608 J/ms°C) are quite close, so for the technical approximation
one can consider the spatial heat transfer, around the point P (Fig. 3a), when the
solution T(r) depends only on the radius r. For the steady-state conditions one
can rewrite the Eq. 5 as follows (spherical co-ordinates — Fig. 3a):

= (r E) =0. (28)

This relation can be easily integrated, which yields:
T@r)=-C/r+0C,. (29)

The obtained function describes the theoretical distribution of the temperature
in the half-space under the considered power-unit (with the centre at point P).
Taking into account the length of piezometers and mixing of water in observation
wells during measurements, we must consider the measured temperature as depth-
averaged values (6). In this situation we have to average the Eq. 46 with respect
to the vertical variable “z”, which yields:

H
(X)) = -I-lf—fT(r =‘/x2+y2+22) dz =
0

17 (30)
=3 (Cz—Cl/‘/x2+y2+zz) dz=
— - | fr + [T T

(the ordinate ¥ must be oriented along the groundwater table, $2=x24+y?.

Two integration constants C; and C; one can calculate making use of measured
temperatures. We have at our disposal four piezometers (as the distances of P20
and P23 from the point P are equal):

X24 = 10.0m, 6@y =264°C for P24
X25 =425 m, 6ys=169°C for P25
X0 = 60.0 m, 6= 15.6°C for P20

Xnuxun =700m, 6 =148°C for P11
The integration constant C; could be easily calculated, using the evident con-
dition (see Fig. 2), that very far from the edifice the groundwater temperature
tends to some constant value (about 12°C in this case). But more difficult is the
determination of the second integration constant, namely C;. One could suggest
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the method of empirical identification of this value, using for example, the least
square method. However in this case the theoretical temperature profile would
(from definition) show very good conformity with the experimental data, whereas
the purpose of this investigation was to determine the reason for temperature
rise.

In this situation an atypical (but logical) attitude was applied. Namely, for
each two temperatures the values of C; and C; were computed, whereas two re-
maining temperatures served for model verification. Effectively we have 6 possible
combinations of the function (30):

C) = —182.7 [m°C], C;=12.7[°C] for TI-A (P24, P25)
C1 =—183.1 [m°C], C,=12.6 [°C] for TI-B (P24, P20)
C1 = -190.2 [m°C], C;=12.1[°C] for TI-C (P24, P11)
C1 = —185.7 [m°C], C;=12.6 [°C] for TI-D (P25, P20)
C; =-2393 [m°C], C;=115[°C] for TI-E (P25, P11)
C1 = —400.0 [m°C], C;=92[°C] for TI-F (P20, P11)

® — experimental points P11

10

0 10 20 30 4 5 60 70 X[m]
Fig. 4. Temperature distribution for case TI

The diagrams of these versions of the function (30) are shown in Fig. 4. The
shape of these curves confirms the hypothesis that the temperature rise in the
region of the power-unit is caused by pure heat convection (see discussion below).
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6.3. Problem TII — Advection and Conduction

For the second model of the problem under consideration it was assumed -that
the hypothetical leak of discharge Q in the power boiler installation and/or con-
struction, causes an axisymmetrical spreading of the hot water (Fig. 3b). Taking
into account, that in this case i, =iy = 0 and §/8¢ = 0, we can write the following
version of Eq. 15 (in polar coordinates, assuming the axial symmetry):

96 lﬁ_[(DT+ 1.4v,dp)r2—f:l. (31)

“ar rar
The depth-averaged flow velocity v, can be expressed by the flow discharge Q:
v (r) = Q/QnHr). (32)
According to Eq. 21, the thermal diffusivity is equal to:

Dy = (0.35 % 0.534 + 0.65 % 1.00)/(4181.0 % 1000.0 % 0.35+
(33)
+830.0 % 2700 % 0.65) = 0.286 x 10~6 [m?/s]

Assuming even unrealistic discharge of leaking water Q = 0.1 [m3/s] (un-
realistic, because such discharge would be recorded by the power-plant control
system), we would have in the piezometer P24 (r24 = 10.0 m) velocity v, = 8.7 *
10~ [m/s], so for alluvial sands (d, = 0.0005 m) we could write:

K7 = 1.4v,d, = 0.06% 10~° [m?/s] < Dy = 0.286 %1076 [m?/s] (34)

This evaluation means that in comparison with heat conduction we can neglect
heat dispersion (as in this case Pe = 0.3 < 3000), and write a simplified form of

the Eq. 31:
06 Dr 3 00
”’ET'Ta_r(’a_F)‘ (35)

The latter equation has the following analytical solution (which can be proved
substituting Eq. 36 into Eq. 35):

0(r)=Curf/F+C (36)

where:
F= Q/(ZnHDT). (37)

Eq. 36 is not valid for Q = 0 (see Bronsztejn 1968). For this special case we have
a different solution of the Eq. 35, namely:

0°(r) = CyIn(r/C). (38)
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‘ @ [°C] — groundwater temperature
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17
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14

P11

13
12 % [m]

0 10 20 30 40 S0 60 70
Fig. 5. Temperature distribution case TII

We can determine integration constants as in the first problem (TI), making
use of experimental data. Analysis of the obtained results leads to the conclusion
that together with the increase of function “F” and distance “r”, the temperature
@ tends to the constant value (where Q > 0.001 [m?/s], ). For the case shown in
Fig. 5, constants C; = —0.00031 (°C m~31), as for this case F = 3.1, and C;=
26.5°C were calculated for temperatures 64 and 655, and then the shape of the
line 8(r) was analysed for different water discharges Q (which are equivalent to
different velocities of groundwater). It turned out that this line tends towards
experimental values of temperature 659 and #;; when Q — 0, which means that
the best coincidence between experimental data and theoretical prediction in this
case (TII) we obtain for pure conduction (v = 0).

The rise of the groundwater temperature analysed in this paper, causes some
additional heat energy loss E;, which can be calculated easily, using the Fourier
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law for the first model (for the mean value of the constant C; = —230 m°C):
Epy = -2m [An.+2g(1 —n,)] C1 = 1.21 kW (39)

and for the second model (the advective energy flux only, as the thermal conduc-
tion can be neglected in this case), for 0 = 0.0001 m?/s:

Epz = QcpCy = 11.08 kW (40)

In comparison with the total energy production of the power-plant (500 MW
for the unit considered), both energy losses are negligible, although in the second
case the value of 11 kW could play some role in the total financial balance.
Fortunately, the temperature rise is apparently caused only by the unavoidable
heat conduction.

7. Conclusions

As can be seen in Fig. 4, all curves 6(r) are located close together, forming
a band (2-4)°C wide. These curves, from the technical point of view, show a
quite acceptable coincidence with the system of experimental points. The worse
concurrence is for lines determined using the temperature 61, measured in the
piezometer P11, the most distant from the heat source (point P). One cannot
exclude, that this piezometer is situated in the zone of more apparent groundwater
flow, due to the drainage system functioning. However, even in this point the
discrepancy is negligible. Finally, taking into account results of the task TII, one
can state that the temperature growth in the neighbourhood of the power unit
500 MW is caused only by pure heat conduction between the power boiler and
the foundation and ground.

As far as the mathematical equations of the heat transfer are concerned, one
can also say that the 2D model, derived and discussed in this paper, is a very
useful and convenient tool for the solving of practical problems.
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